Heat-treated Be–Mg–Al oxide (originally musgravite or taaffeite)

Dr Karl Schmetzer¹, Dr Heinz-Jürgen Bernhardt² and Dr Olaf Medenbach²

¹. Marbacher Strasse 22b, D-85238 Petershausen, Germany
². Institut für Mineralogie, Ruhr-Universität, D-44780 Bochum, Germany

ABSTRACT: A heat-treated rough gem mineral from Sri Lanka was examined by gemmological and mineralogical methods. The sample consists of lamellar intergrown taaffeite and beryllium-bearing spinel. Comparing the observed phases and textural patterns with the results of synthesis experiments by Kawakami et al. (1986), the formation of the observed phases and their texture may be explained.

Keywords: heat treatment, musgravite, taaffeite, spinel, Sri Lanka

Introduction

This paper describes the gemmological and mineralogical examination of a rough gem mineral from Sri Lanka. It is shown how a gem mineral determination, which was thought at first to be a normal and simple routine procedure, can become quite complicated and time consuming. It is also shown which determinative steps can be necessary to come to a final and conclusive result.

Experimental results

The sample was first observed in the course of examination of a lot of water-worn rough corundum crystals, originating from Sri Lanka, which had been submitted to commercial heat treatment at about 1650°C by a gem dealer in order to improve the colour of the stones. Within this lot, a somewhat milky-white slightly bluish-to-mauve stone did not show any of the common microscopic features of heat-treated corundum and, thus, a window was polished at the surface of the rough stone for the determination of refractive indices of the birefringent sample.

Figure 1: Faceted sample of 0.50 ct which was determined as heat-treated Be–Mg–Al oxide (originally musgravite or taaffeite), now consisting of intergrown taaffeite and Be–Mg–Al-spinel. Size of the stone approx. 4.2 x 5.8 mm. Photo by Maha DeMaggio.

Values of 1.717 to 1.721 indicated that the specimen was either taaffeite, BeMg₃Al₈O₁₆, or musgravite, BeMg₂Al₆O₁₂. Taaffeite is located at the binary join chrysoberyl BeAl₂O₄-spinel MgAl₂O₄ at 75% of the spinel end member, whereas musgravite contains
Figure 2: Back-scattered electron (BSE) image revealing lamellar intergrown spinel (dark) and taaffeite (lighter) areas. The width of the photograph represents 0.47 mm.

66.7% of the spinel molecule. Both minerals are only rarely found in lots of faceted stones from Sri Lanka, and similarly only a few rough taaffeite crystals of gem quality are known from this country (Schmetzer, 1983a; Kampf, 1991; Demartin et al., 1993).

Figure 3: Thin section revealing intergrown blue and orange lamellae (representing birefringent taaffeite) and purple areas (representing isotropic spinel and birefringent taaffeite in extinction position). Crossed polarisers with a gypsum plate inserted in the microscope; the width of the microphotograph represents 0.45 mm.

Problems associated with the distinction of faceted taaffeites and musgravites were recently discussed by Kiefert and Schmetzer (1998). Due to an overlap of gemmological properties, e.g. refractive indices or specific gravity, the distinction of these two minerals needs additional data from, for example, quantitative chemical analysis or X-ray diffraction. Consequently, after cutting two faceted stones of 0.69 and 0.50 ct from the rough sample, one of which is shown in Figure 1, small residual fragments of the rough were used for subsequent mineralogical examination.

X-ray powder diffraction analysis was first performed by the Debye-Scherrer technique, but no complete match was found with standard films of taaffeite and musgravite. Subsequently, a Guinier camera was used, which reveals a better resolution of diffraction lines; in addition, this permits three exposures simultaneously, i.e. the examination of the powder pattern of an unknown sample together with two external standards. Consequently, the unknown sample from Sri Lanka was examined together with external standards of an analysed taaffeite from Sri Lanka and an analysed musgravite from Antarctica. As a result, the powder pattern of the unknown sample from Sri Lanka was found to consist of the complete pattern of taaffeite with a number of additional lines which matched the pattern of magnesium–aluminium spinel. The strongest lines of musgravite were not found.

In order to obtain chemical data from the sample, two of the residual fragments mentioned above were polished and submitted to electron microprobe analysis. Although no clear differences between single phases were observable in reflected light, a back-scattered electron (BSE) image (Figure 2), performed with the BSE system of the microprobe, revealed a fine lamellar pattern of two intimately intergrown phases. A similar texture was also observed in thin section with crossed polarizers (Figure 3).

Quantitative chemical data were obtained from 10 single analysis points for each of the
two phases. They indicate a first oxide phase whose composition is almost identical with the theoretical formula of taaffeite and a second oxide with somewhat larger BeO contents and a different Mg:Al ratio. In detail, the average composition of the taaffeite was calculated as \( \text{Be}_{1.0}\text{Mg}_{2.97}\text{Fe}_{0.03}\text{Al}_{7.98}\text{O}_{16} \) (assuming one BeO per formula unit and total iron calculated as FeO), which is almost identical to the ideal formula of taaffeite, \( \text{BeMg}_3\text{Al}_8\text{O}_{16} \) (Schmetzer, 1983b; Nuber and Schmetzer, 1983).

Calculating the second phase to 2.0 Al atoms per formula unit (according to the determination of spinel by X-ray powder diffraction), and assuming the difference of divalent cations to be due to beryllium, which cannot be analysed directly by electron microprobe, the formula of the average composition of the 10 microprobe analyses was calculated to be \( \text{Be}_{0.35}\text{Fe}_{0.01}\text{Mg}_{0.64}\text{Al}_{2}\text{O}_{4} \) (again assuming total iron as FeO and summing the divalent cations to 1.0). This composition indicates a beryllium-bearing spinel with 65% of the pure magnesium-aluminium end member within the chrysoberyl-spinel join.

In summary, all the evidence indicates that the sample consists of two lamellar intergrown phases: taaffeite and beryllium-bearing spinel.

**Discussion**

Considering the experimental examinations of the binary system chrysoberyl \( \text{BeAl}_2\text{O}_4 \)-spinel \( \text{MgAl}_2\text{O}_4 \), published by Kawakami *et al.* (1986), the observations described above become understandable. In 1986 taaffeite and musgravite were still regarded as polytypes with an identical chemical composition (the difference in BeO content is only 1.56 wt.%) and, consequently, the phase diagram is somewhat simplified. The general results presented by Kawakami *et al.*, however, are extremely useful in understanding the analytical results obtained from the sample from Sri Lanka.

According to Kawakami *et al.* (1986), both taaffeite and musgravite are incongruently melting compounds. Above an inversion temperature, which is not specified exactly, only a spinel phase and a melt exist. At high temperatures, spinel and chrysoberyl form a solid solution series. This high-temperature compound, i.e. the beryllium-bearing spinel, exsolves taaffeite and/or musgravite lamellae with decrease of temperature.

These phase relationships in the chrysoberyl–spinel system were investigated using the floating-zone technique for crystal growth starting from sintered rods formed from \( \text{BeAl}_2\text{O}_4 \) and \( \text{MgAl}_2\text{O}_4 \) powders. One experiment was performed with a rod having a starting composition of 37.5% chrysoberyl and 62.5% Mg–Al-spinel. In this run, Kawakami *et al.* (1986) obtained a sample consisting of fine lamellar intergrown taaffeite, musgravite and spinel. These phases were identified by X-ray powder diffraction, but no analytical data, e.g. by electron microprobe, were given and the transition temperatures and extent of intermediate phases still need to be established. It is evident, however, that with a starting composition of 62.5% Mg–Al-spinel and a synthetic end product of taaffeite (which contains a formula percentage of 75% Mg–Al-spinel) and musgravite (which contains a formula percentage of 66.7% Mg–Al-spinel), the resulting intermediate spinel is also a beryllium-bearing phase.

Consequently, the optical pattern of lamellar intergrown phases and the crystalline compounds obtained in the laboratory experiment of Kawakami *et al.* (1986) are consistent with our results. Most probably, during heat treatment of a natural Be–Mg–Al-oxide crystal (musgravite or intergrown musgravite and taaffeite), a beryllium-bearing spinel phase was formed at elevated temperatures. In the course of the cooling process, this high-temperature spinel phase exsolved taaffeite lamellae, but did not transform completely to taaffeite or musgravite. No evidence for the formation of melt was seen at the surface of the rough specimen.
Conclusion

The sample from Sri Lanka was found to be a heat-treated Be–Mg–Al-oxide crystal, most probably musgravite or intergrown musgravite and taaffeite, which now (after heat treatment) consists of intergrown taaffeite and spinel lamellae.

Acknowledgement

The authors are grateful to Professor I. Sunagawa of Tokyo, Japan, for the translation of the relevant literature in Japanese.

References

Demartin, F., Pilati, T., Gramaccioli, C.M., and de Michele, V., 1993. The first occurrence of musgravite as a faceted gemstone. *J. Gemm.*, 23(8), 482–5
Nuber, B., and Schmetzer, K., 1983. Crystal structure of ternary Be–Mg–Al oxides: taaffeite, BeMg$_3$Al$_8$O$_{16}$, and musgravite, BeMg$_2$Al$_6$O$_{12}$. *N. Jb. Miner. Mh.*, 1983(9), 393–402
Mineral inclusions in emeralds from different sources

I.I. Moroz1 and I.Z. Eliezri2

1. Institute of Earth Sciences, The Hebrew University of Jerusalem, 91904, Israel
2. Colgem EL 97 Ltd, 52 Bezalel Street, Ramat Gan 52521, Israel

ABSTRACT: Mineral inclusions in emeralds from eleven gem-mining regions and a hydrothermally grown synthetic emerald were chemically analysed with the electron microprobe JEOL JXA-8600. Emerald occurrences in Australia, Brazil, Mozambique, Russia, Tanzania (Lake Manyara) and Zambia belong to ‘schist type’ deposits. The inclusions comprise micas, talc, pyrophyllite, chlorite, wollastonite, chromite, calcite, dolomite, Fe-oxide, apatite, quartz, pyrite, fluorite and plagioclase. The geological settings for Colombian, Nigerian and Sumbawanga (Tanzania) deposits resulted in related assemblages of solid inclusions in these emeralds (for example, chlorine-rich Al-glauconite, sphalerite, titanium-rich mica, anhydrite and beryllium minerals).

Keywords: electron microprobe, emerald, mineral inclusions

Introduction

Emerald is the most important gemstone of the beryl group (Gübelin, 1974; Sinkankas, 1981; Smith, 1972; Samsonov et al., 1984) and the commercial value of emeralds is affected by many factors, not only by their colour and clarity, but also by their provenance. For the gemmologist the identification of inclusions in gems is of the utmost importance both for their authentification and for the determination of their geological origin (Dele-Dubois and Schubnel, 1987).

A selection of emerald crystals, cut stones and their associated mineral inclusions, from eleven gem-mining regions in Afghanistan, Australia, Brazil, Colombia, Mozambique, Nigeria, Russia, Tanzania, and Zambia, and Biron synthetic emerald were studied using an optical microscope, chemically analysed with an electron microprobe JEOL model JXA-8600 and photographed. This work presents the results of studies of the solid inclusions in these emeralds. Some of the same samples were also studied by a laser Raman microspectrometer DILOR XV (Moroz et al., in press). The study was undertaken to compare the mineral inclusions, characterize distinctions between them and to establish a data base which will enable distinction of emeralds originating from different sources. The electron microprobe technique allows nondestructive chemical analysis of discrete spots across a single crystal, but it has some disadvantages:

(1) With our equipment we cannot measure elements lighter than Na (atomic number 11), so we could not obtain data for Be, a major constituent of beryllium minerals; Li, B, F and water, which can be present in quantities up to several wt%.
Table I: Mineral inclusions in emeralds from different deposits.

<table>
<thead>
<tr>
<th>Country</th>
<th>Colombia</th>
<th>Nigeria</th>
<th>Tanzania</th>
<th>Brazil</th>
<th>Afghanistan</th>
<th>Russia</th>
<th>Zambia</th>
<th>Australia</th>
<th>Mozambique</th>
<th>Synthetic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Localities</td>
<td>Maza</td>
<td>Jos</td>
<td>Marangua</td>
<td>Sumbawanga</td>
<td>Carnita</td>
<td>Panjshir</td>
<td>Malisheko</td>
<td>Kitoe (blue-green)</td>
<td>Kitoe (green)</td>
<td>Pool</td>
</tr>
<tr>
<td>No. of samples</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Minerals</td>
<td></td>
</tr>
<tr>
<td>Fe oxide</td>
<td></td>
</tr>
<tr>
<td>Fe-Cr oxide</td>
<td></td>
</tr>
<tr>
<td>Fe-Cr-Ni-oxide</td>
<td></td>
</tr>
<tr>
<td>Fe-Mn oxide</td>
<td></td>
</tr>
<tr>
<td>Sphalerite</td>
<td></td>
</tr>
<tr>
<td>Phlogopite</td>
<td></td>
</tr>
<tr>
<td>Muscovite</td>
<td></td>
</tr>
<tr>
<td>Ti-rich mica</td>
<td></td>
</tr>
<tr>
<td>Talc</td>
<td></td>
</tr>
<tr>
<td>Chlorite</td>
<td></td>
</tr>
<tr>
<td>Pyrophyllite</td>
<td></td>
</tr>
<tr>
<td>Glauconite</td>
<td></td>
</tr>
<tr>
<td>Illite</td>
<td></td>
</tr>
<tr>
<td>Illite-smectite</td>
<td></td>
</tr>
<tr>
<td>Margarite</td>
<td></td>
</tr>
<tr>
<td>Wollastonite</td>
<td></td>
</tr>
<tr>
<td>Apatite</td>
<td></td>
</tr>
<tr>
<td>Chromite</td>
<td></td>
</tr>
<tr>
<td>Aragonite</td>
<td></td>
</tr>
<tr>
<td>Dolomite</td>
<td></td>
</tr>
<tr>
<td>Fluorite</td>
<td></td>
</tr>
<tr>
<td>Anhydrite</td>
<td></td>
</tr>
<tr>
<td>Baryte</td>
<td></td>
</tr>
<tr>
<td>Pyrite</td>
<td></td>
</tr>
<tr>
<td>Albite</td>
<td></td>
</tr>
<tr>
<td>Quartz</td>
<td></td>
</tr>
<tr>
<td>Beryl</td>
<td></td>
</tr>
<tr>
<td>Bertrandite</td>
<td></td>
</tr>
<tr>
<td>Euclase</td>
<td></td>
</tr>
<tr>
<td>Phenakite</td>
<td></td>
</tr>
</tbody>
</table>

NB: The following identifications are unconfirmed: tetrahedrite and tourmaline in Jos emerald, helvite in Sumbawanga, calcite in Panjshir and gypsum in Kitoe emerald.

J. Gemm., 1999, 26, 6, 357–363
Figure 1: Inclusions of phlogopite (Phi), talc (Tc) and apatite (Ap) in emerald from Zambia. Image from scanning electron microscope (backscattered electrons).

Figure 2: Wollastonite (Wol), quartz (Q) and muscovite (Mu) aggregate in emerald from Brazil (Carnaiba).

Figure 3: Chlorite (Chl) and wollastonite (Wol) in flaws in emerald from Brazil (Carnaiba).

Figure 4: Inclusions of phlogopite (Phi), aluminochromite (Chr) and pyrite (Py) in emerald from Brazil (Santa Teresinha).

Figure 5: Quartz (Q) in fluid inclusion in synthetic emerald.

Figure 6: Albite crystal inclusion in synthetic emerald.

Mineral inclusions in emeralds from different sources
### Table II: Crystallochemical formulae of mineral inclusions in emeralds from different deposits (summary of microprobe study)

<table>
<thead>
<tr>
<th>Mineral Type</th>
<th>Deposit/Location</th>
<th>Crystallochemical Formula</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phlogopite</td>
<td>Brazil, Santa Terezinha</td>
<td>(K₀.₇₉Na₀.₀₂)₂(OH)₀.₁₂(Si₃.₁₄Al₀.₸₈)₀.₀₁[OH,Fl]₂</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tanzania, Lake Manyara</td>
<td>K₀.₆₅(Mg₃.₆₆Fe₀.₄₄Al₀.₹₄Ti₀.₀₈Ni₀.₀₉Ca₀.₀₇)[OH,Fl]₂</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tanzania, Lake Manyara</td>
<td>(K₀.₇₁Na₀.₀₁Ca₀.₁₂Ce + La₀.₀₅Ca₀.₀₉)₀.₉₂(Mg₉₅.₁₅Fe₀.₄₈Al₀.₂₉Ti₀.₀₂Ni₀.₀₈Mn₀.₀₁)[OH,Fl]₂</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Russia, Malishevo</td>
<td>K₀.₈₄Na₀.₀₆Ca₀.₀₁(Mg₀.₅₅Fe₀.₄₅Al₀.₹₇Si₀.₀₁)[OH,Fl]₂</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zambia, Kitwe (in green emerald)</td>
<td>K₀.₆₇Na₀.₀₆Ca₀.₀₁(Mg₀.₃₃Fe₀.₃₆Al₀.₸₁)[OH,Fl]₂</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zambia, Kitwe (in bluish-green emerald)</td>
<td>K₀.₆₇Na₀.₁₀Ca₀.₀₉(OH)₀.₁₂(Si₃.₅₆Al₀.₴₄)[OH,Fl]₂</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Australia, Pool</td>
<td>K₀.₇₃Na₀.₀₆Ca₀.₀₁(Mg₀.₄₆Fe₀.₄₅Al₀.₹₆Ti₀.₀₁Zn₀.₀₂Sn₀.₁₂)[OH,Fl]₂</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mozambique, Santa Maria</td>
<td>K₀.₄₁Na₀.₂₅Ca₀.₀₇(Mg₀.₉₀Fe₀.₅₅)[OH,Fl]₂</td>
<td></td>
</tr>
<tr>
<td>Muscovite</td>
<td>Brazil, Carnaiba</td>
<td>K₀.₉₂Na₀.₀₁Ca₀.₀₁(OH)₀.₁₂(Si₃.₃₈Al₀.₸₄)[OH,Fl]₂</td>
<td></td>
</tr>
<tr>
<td>Titanium-rich mica</td>
<td>Tanzania, Sumbawanga</td>
<td>K₀.₆₅Na₀.₀₈Ca₀.₀₂(Al₀.₸₄Fe₀.₄₅Mg₀.₅₆)[OH,Fl]₂</td>
<td></td>
</tr>
<tr>
<td>Margarite</td>
<td>Russia, Malishevo</td>
<td>Ca₀.₆₆Na₀.₀₆Al₁[Si₃.₅₆Al₀.₸₄][OH,Fl]₂</td>
<td></td>
</tr>
<tr>
<td>Mixed-layer illite-smectite</td>
<td>Brazil, Carnaiba</td>
<td>K₀.₃₄Na₀.₀₁Ca₀.₂₇(Al₀.₷₀Fe₀.₃₉Mg₀.₃₉)[OH,Fl]₂</td>
<td></td>
</tr>
<tr>
<td>Iilitine</td>
<td>Tanzania, Sumbawanga</td>
<td>K₀.₃₄Na₀.₀₈Ca₀.₀₂(Al₀.₸₄Fe₀.₃₉Mg₀.₃₉)[OH,Fl]₂</td>
<td></td>
</tr>
<tr>
<td>Al-glaucnnte</td>
<td>Nigeria, Jos</td>
<td>K₀.₄₂Na₀.₁₂Ca₀.₀₆Ca₀.₀₂(Al₀.₷₀Fe₀.₃₉Mg₀.₃₉)[OH,Fl]₂</td>
<td></td>
</tr>
<tr>
<td>Al-celadonite</td>
<td>Zambia, Kitwe</td>
<td>K₀.₃₈Na₀.₁₄(OH)₀.₁₂(Al₀.₸₈Fe₀.₄₅)[OH,Fl]₂</td>
<td></td>
</tr>
<tr>
<td>Talc</td>
<td>Brazil, Santa Terezinha</td>
<td>(Mg₀.₅₇Fe₀.₄₃Cr₀.₀₂Ni₀.₀₂Mn₀.₀₁)[OH,Fl]₂</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tanzania, Lake Manyara</td>
<td>(Mg₀.₅₇Fe₀.₄₃)[OH,Fl]₂</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zambia, Kitwe</td>
<td>(Mg₀.₇₅Fe₀.₂₅Ca₀.₀₂)[OH,Fl]₂</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Colombia, Muzo</td>
<td>(Mg₀.₇₅Fe₀.₂₅)[OH,Fl]₂</td>
<td></td>
</tr>
<tr>
<td>Pyrophyllite</td>
<td>Russia, Malishevo</td>
<td>K₀.₁₉Na₀.₁₁[OH,Fl]₂</td>
<td></td>
</tr>
<tr>
<td>Chlorite</td>
<td>Brazil, Carnaiba</td>
<td>(Mg₀.₄₅Fe₀.₃₂Ca₀.₀₂)[OH,Fl]₂</td>
<td></td>
</tr>
<tr>
<td>Wollastonite</td>
<td>Brazil, Carnaiba</td>
<td>(Mg₀.₇₅Fe₀.₄₃)[OH,Fl]₂</td>
<td></td>
</tr>
<tr>
<td>Aluminocromite</td>
<td>Brazil, Santa Terezinha</td>
<td>(Ca₀.₆₆Mg₀.₄₃Fe₀.₃₉)[OH,Fl]₂</td>
<td></td>
</tr>
<tr>
<td>Eulease</td>
<td>Tanzania, Lake Manyara</td>
<td>Be₀.₁₀(Al₀.₹₈)[OH,Fl]₂</td>
<td></td>
</tr>
</tbody>
</table>

**References:**

- J. Gemm., 1999, 26, 6, 357–363
(2) different oxidation states of elements such as iron and vanadium cannot be determined; and

(3) the technique allows chemical analyses only at the surface of a grain.

Nevertheless, the microprobe is being used more frequently in the study of single emerald samples and their solid inclusions; see, for example, Gübelin, 1982; Graziani et al., 1983; Cassedanne and Sauer, 1984; Eidt and Schwarz, 1986; Ringsrud, 1986; Dele-Dubois and Schubnel, 1987; Miyata et al., 1987; Schmetzer et al., 1991; Schwarz et al., 1996 and Moroz, 1997.

Materials and apparatus

The samples in this study were provided by Israel’s Emerald Cutters Association. This article presents the results of testing a selection of emerald crystals and faceted emeralds from eleven gem-mining regions ranging from 0.3 (Afghanistan) to 4.39 ct (Brazil, Carnaiba), and Biron synthetic emerald. The samples represent a wide range of colours between bluish-green and yellowish-green. The rough crystals are predominantly euhedral prismatic. Some of the rough and the polished samples have eye-visible colour zoning, with sporadic colourless zones, typically parallel to the prism faces. The diaphaneity of the samples ranged from transparent to translucent, depending on the nature and number of inclusions present. Weak-to-prominent growth structures are present in most of the samples. Most common (especially in Nigerian specimens) were strongly developed straight and angular sequences of prism, basal-pinacoid and pyramid planes.

Mineral inclusions in 28 samples were chemically characterized by use of the electron microprobe JEOL model JXA-8600 Superprobe at the Institute of Earth Sciences, The Hebrew University of Jerusalem. The instrument was equipped with four wavelength-dispersive spectrometers which were used to analyse Mg, Na, Cr and V; the other element contents were measured using an energy-dispersive spectrometer, which displays the entire spectrum (atomic number eleven and above) produced by the spot that was exposed to the beam. The microprobe was operated using 15 kV acceleration voltage with a beam current of 10 nA. The Tracor-Northern Computerized automation system was used to collect and store data, as well as allowing data analysis and presentation. Standards consisted of natural minerals and synthetic materials. We refer the reader to Goldstein et al. (1981) for a thorough review of the instrumentation, theory and applications of the technique.

Results and Discussion

The inclusions identified are listed in Table I and a selection is shown in Figures 1–6. The means of 10–15 microprobe analyses for each species of inclusion for each locality are presented in Table II as calculated formulae. The detection limits for elements analysed by microprobe are generally in the range up to two thousand parts per million. Total iron is reported as FeO; vanadium can also occur in multiple valence states but is reported as V₂O₅. It has been possible to identify some beryllium minerals, using calculations based on stoichiometry.

Emerald occurrences in Australia, Brazil, Mozambique, Russia, Tanzania (Lake Manyara) and Zambia belong to so-called ‘schist-type’ deposits, similar in many respects to those described by Fersman (1925) as emerald-bearing biotite schists in the Ural Mountains; that is, they are located in regions where acidic magmas have penetrated country rocks in the vicinity of basic and ultrabasic rocks. In these situations the beryllium is believed to be derived from acidic intrusions and the chromium appears to have originated from the country rocks (Beus and Mineev, 1974; Kiyevlenko et al., 1974; Moroz, 1978; Sliwa and Nguluwe, 1984; Schwarz and Eidt, 1989; Schwarz, 1991; Laurs et al., 1996; Moroz and Eliezri, 1998). Such emeralds usually occur in phlogopite-biotite rocks which also contain actinolite or tremolite and variable quantities of talc, chlorite, quartz, albite, chromite, ilmenite, magnetite, apatite and fluorite (Moroz, 1978;
1979; 1983; 1996). Some of these minerals occur as inclusions in the emeralds studied and vary in size, with the largest up to 1 mm. Usually there is no visible crystallographic orientation of the mineral inclusion distribution within the emerald host crystals. Only the minerals trapped on crystal faces (for example, aragonite, dolomite, or the bertrandite and euclase aggregate on the prism and pinacoid of emerald from Santa Terezinha) during a period of growth interruption show a spatial distribution related to the emerald crystallography. Some of the inclusions are identifiable optically, but many are not and these have been identified by electron probe and Raman microanalyses. The results of the study allow us to distinguish different compositions of the same mineral species in emeralds from different deposits (see the compositions in Table II).

Phlogopite is the most common mineral inclusion in these emeralds (Table I; Figures 1 and 4), but its composition varies (Table II, 1–8). Formulae calculated on a basis of 11 oxygens typically have total numbers of octahedral cations less than the ideal 3.0. The Mg:Fe ratios in phlogopite inclusions in emeralds from Brazil (Santa Terezinha, Figure 4), Zambia (Figure 1), Tanzania (Manyara), Mozambique and Russia lie in the range 4.1–10.9 with the highest ratio in phlogopite from Santa Terezinha. This ratio in phlogopite inclusions in emeralds from Australia is 2.6 and in bluish-green emerald from Zambia is 1.7. The values of this ratio in phlogopite correlate with relative concentrations of these elements in the host emeralds from these deposits and reflect country rock compositions.

In addition to chromium (0.001–0.02 atoms per three octahedral sites) and titanium (0.03 atoms), several other substitutions are recorded in small amounts for the octahedral sites of phlogopites. The analyses show a few hundredths of an atom of Mn per three octahedral sites in Mozambiquean, Russian, Tanzanian (Manyara) and Zambian phlogopites and there is a coexisting phase of Mn-rich oxide in a Zambian bluish-green emerald (Table I). Copper is present in Russian and Zambian phlogopite, nickel in Tanzanian, cobalt in Russian, vanadium in Brazilian and Zambian (from bluish-green emerald) and tin in Australian phlogopite inclusions (Table II). Cesium is found in Russian, Australian and Tanzanian phlogopite; the higher values being in phlogopite from the first two deposits. Phlogopite inclusions of tabular habit in emerald from Mozambique (Table II, N 8) usually contain appreciable phosphorus concentrations (to 0.52 atoms per four tetrahedral sites). Sulphur occurs in amounts of 0.01–0.05 of an atom in the mica inclusions from Tanzanian, Australian and Russian samples, with the highest value in phlogopite from the first deposit.

Conclusions

Mineral inclusions in emeralds from eleven gem-mining regions were chemically characterized by use of the electron microprobe JEOL JXA-8600.

The emeralds from the Australia, Brazil, Mozambique, Russia, Tanzania (Lake Manyara) and Zambia localities belong to 'schist-type' deposits, and they may contain micas, margarite, aluminiferous glauconite, celadonite, mixed-layer illite-smectite, talc, pyrophylite, chlorite, wollastonite, aluminochromite, aragonite, calcite, dolomite, Fe-oxides, apatite, quartz, pyrite, anhydrite, fluorite, plagioclase, beryl, euclase and bertrandite. The results of the study allow us to distinguish different compositions of the same mineral species in emeralds from different deposits – for example, mica.

The geological settings for Colombian, Nigerian and Sumbawanga (Tanzania) deposits result in related sets of solid inclusions consisting of chloride-rich Al-glaucnite, essentially a copper–antimony sulfide and tourmaline in Nigerian emerald; sphalerite in Colombian emerald; and titanium-rich mica, illite, anhydrite, helvine, euclase, phenakite and bertrandite in emerald from Sumbawanga.

Acknowledgement

The financial support of 'The Wolfson Foundation for Scientific Research' is gratefully acknowledged. Members of J. Gemm., 1999, 26, 6, 357–363
The Israel Emerald Cutters Association kindly provided samples. We wish to extend our thanks to Prof. Micheline Boudeulle and Dr. Gerard Panczer of the Lyon University Claude Bernard for helping with Raman spectroscopy analyses; to Vitaly Gutkin of the Hebrew University for helping with microprobe analyses and photomicrographs; to Prof. E. Sass of The Hebrew University and to Prof. A.H. Rankin of Kingston University, Surrey, for reviewing the paper and for their valuable suggestions.

References


Eidt, T., and Schwarz, D., 1986. Brazilian emeralds; inclusions and genetic aspects; Socoto and Carnaiba, Brazil. Fortschritte der Mineralogie, Belihett, 64(1), 41


Gübelin, E.J., 1974. Internat. world of gemstones. ABC Zurich, Switzerland, 233


Hänni, H.A., and Schwarz, D., 1986. Brazilian emeralds; inclusions and genetic aspects; Santa Terezinha, Goias; Itabira, Minas Gerais; Tauna, Ceara. Fortschritte der Mineralogie, Belihett, 64(1), 63


Element mapping of trapiche rubies
Chrome chalcedony – a review

Dr Jaroslav Hyrsl

Kolin, Czech Republic

ABSTRACT: Three chrome chalcedonies from different sources are described. Stones from recent finds in Zimbabwe and Bolivia have refractive indices of 1.530-1.550, rarely with a birefringence up to 0.005. Roman intaglios have refractive indices about 1.540. All have a bright-red reaction under a Chelsea colour filter and show chromium spectra in a hand spectroscope. The intaglios show in addition complete absorption in the blue part of spectrum, caused probably by higher iron contents. Properties of artificially dyed Cr-chalcedony are given for comparison.

Keywords: Bolivia, chrome chalcedony, Roman intaglios, Zimbabwe

Introduction

Cryptocrystalline quartz, chalcedony, has many varieties of which the green chrysoprase, known from several localities, is the most valuable. The oldest known commercial chrysoprase deposit was near Szklary in today’s Poland, where the first written report dates from 1425 (Natkaniec-Nowak et al, 1989); the deposit was rediscovered in 1740. Much younger finds are from the Ural Mountains, California and Oregon at the end of the nineteenth century. The most important recent chrysoprase deposits were discovered in the 1960s in Queensland, Australia (Krosch, 1990), in Western Australia, in the states of Goias and Minas Gerais in Brazil and in Sarykulboldy, Kazakhstan (Samsonov and Turingue, 1984).

There is no doubt that chrysoprase is coloured by Ni, which can be contained in amounts up to 5.08% NiO (Barsanov and Jakovleva, 1981). Green opal very similar to chrysoprase is known from Szklary and from Dodoma in Tanzania, where it contains about 1.1% Ni (Schmetzer et al, 1976). Opal can be distinguished by means of its lower refractive index.

Occurrences of chrome chalcedony

Green chalcedony with a high Cr-content was found at first in about 1955 near Mtoroshanga in today’s Zimbabwe and called mtorolite (Figure 1). Its best

Figure 1: Mtorolite, Zimbabwe, the larger piece is 17 x 9 cm.
descriptions were written by Phillips and Brown (1989) and Campbell (1955). It comes from the Great Dyke, a huge 500 km long dyke of ultrabasic rock. Mtorolite occurs in a deposit 1.7 km long striking N–S, and is often accompanied by white chalcedony. The best cuttable material came from a small shaft where chrome chalcedony formed three layers with a width of 6–25 mm. The best qualities have already been mined out and at present only low-grade pale green or mottled mtorolite is recovered occasionally as a by-product during the mining of serpentinite for carvings (A. Loke, pers. comm, 1996).

A new occurrence of Cr-chalcedony was found recently in eastern Bolivia (Hyrsl and Petrov, 1998). It is called ‘chiquitanite’ by local jewellers, from the Chiquitania region of eastern Santa Cruz Department. The chrome chalcedony has a pleasant apple- to dark-green colour and is opaque to translucent (Figures 2 and 3). Some stones show a very fine agate-like structure (Figure 4) or a brown ‘net’ of Fe-oxides. Some parts are coloured more generally brownish by Fe-oxides. The best quality material is facetable and compares favourably with mtorolite. Most of the rough material is exported directly to Brazil and the author found cut chrome chalcedony at the 1995 Munich mineral show described as ‘a new find of apatite from Brazil’.

Figure 5: Chrome chalcedony Mercury intaglio (coll. W. Mican), 16.9 x 12.5 x 6.8 mm.
and weighs 1.820 g. It is apple-green with an uneven colour. Several white spots can be seen inside and a small quantity of brown matrix occurs near the girdle. The gem is an intaglio with the head of the Roman god Mercury and is polished on the other side. Its age is not certain and it could be either Roman or a younger copy.

Another two small light and dark green chrome chalcedony intaglios form part of a necklace in the collection of the Museum of Decorative Arts in Prague, Czech Republic (Figure 6). The necklace is probably from the beginning of the nineteenth century, but the Cr-chalcedony intaglios could be much older, because they are more scratched than the others made of carnelian. Two small Cr-chalcedony intaglios were also studied in Prague from a Romanesque reliquary of St. Maurus dating from the beginning of the thirteenth century. According to Ondrejeva (pers. comm.), both intaglios probably date from the second century AD. They are olive green and emerald green respectively, with $n = 1.540$, no birefringence, and a specific gravity of 2.58. They show no luminescence in UV, both are red under a Chelsea filter and show Cr-spectra in a hand spectroscope (the emerald green intaglio shows a much sharper line in the red than

### Table 1: Gemmological properties of Cr-chalcedonies from different sources

<table>
<thead>
<tr>
<th></th>
<th>Zimbabwe</th>
<th>Bolivia</th>
<th>Intaglio</th>
<th>Dyed chalcedony</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colour</td>
<td>dark green</td>
<td>dark green</td>
<td>dark green</td>
<td>dark green</td>
</tr>
<tr>
<td>Diaphaneity</td>
<td>translucent</td>
<td>translucent</td>
<td>translucent</td>
<td>translucent</td>
</tr>
<tr>
<td>Hardness</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>RI</td>
<td>1.540</td>
<td>1.530–1.550</td>
<td>1.540</td>
<td>1.532–1.540</td>
</tr>
<tr>
<td>Birefringence</td>
<td>0–0.005</td>
<td>0–0.006</td>
<td>–</td>
<td>0–0.005</td>
</tr>
<tr>
<td>SG</td>
<td>2.56–2.60</td>
<td>2.56–2.57</td>
<td>2.56</td>
<td>2.56–2.58</td>
</tr>
<tr>
<td>UV luminescence:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LWUV</td>
<td>yellowish</td>
<td>yellowish</td>
<td>very light yellowish</td>
<td>inert</td>
</tr>
<tr>
<td>SWUV</td>
<td>pale yellowish in light parts</td>
<td>inert</td>
<td>inert</td>
<td>inert</td>
</tr>
<tr>
<td>Chelsea colour filter</td>
<td>Bright red</td>
<td>Bright red</td>
<td>Bright red</td>
<td>Weak brownish-red</td>
</tr>
</tbody>
</table>
Table II: Chemical composition of analysed chalcedonies from Bolivia and Zimbabwe, and artificially coloured chalcedony.

<table>
<thead>
<tr>
<th>Wt.%</th>
<th>Cr chalcedony – Bolivia</th>
<th>Cr chalcedony – Zimbabwe</th>
<th>Artificially coloured chalcedony</th>
<th>Detection limits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dark</td>
<td>Light</td>
<td>Dark</td>
<td>Light</td>
</tr>
<tr>
<td>SiO₂</td>
<td>95.90</td>
<td>96.00</td>
<td>93.56</td>
<td>94.38</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.09</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>0.09</td>
<td>0.13</td>
<td>0.29</td>
<td>0.18</td>
</tr>
<tr>
<td>Cr₂O₃</td>
<td>0.36</td>
<td>0.51</td>
<td>0.45</td>
<td>0.21</td>
</tr>
<tr>
<td>MgO</td>
<td>0.11</td>
<td>0.15</td>
<td>0.30</td>
<td>0.16</td>
</tr>
<tr>
<td>MnO</td>
<td>–</td>
<td>–</td>
<td>0.08</td>
<td>–</td>
</tr>
<tr>
<td>TOTAL</td>
<td>96.55</td>
<td>96.79</td>
<td>94.68</td>
<td>94.93</td>
</tr>
</tbody>
</table>

NB: CaO (0.10 wt.%), FeO (0.10 wt.%), NiO (0.30 wt.%), K₂O (0.05 wt.%) and Na₂O (0.30 wt.%) were sought but below their respective detection limits.

the olive green stone) with complete absorption in the blue part of the spectrum, very similar to the Mercury intaglio which is described later.

Many ancient gems made from Cr-chalcedony are housed in the Cabinet des Medailles in the Bibliothèque Nationale in Paris. Their colours range from emerald-green with a red response under the Chelsea colour filter to light yellowish-green with a pink colour under the Chelsea filter. Their quality ranges from clean translucent to greyish opaque with brown or red networks or spots of Fe-oxides. According to Broustet (pers.comm.), they are mostly from the first to the third century AD, and some could be older. Considering their number (a few dozen) and very different qualities they could come from different parts of the same deposit or from many deposits.

Green chalcedony coloured artificially has usually been dyed by chromium salts. Fortunately, it is easy to distinguish from natural stones by its different reactions under a Chelsea filter and in a hand spectroscope. It also has a typical structure, because grey chalcedony must be cut perpendicular to its fibres to facilitate better permeability for the dye (Webster, 1994). The chemical analysis (Table II) shows also that it has a lower content of water than natural chrome chalcedonies.

**Gemmological properties**

The four materials mentioned above were studied at the same time, including both high- and low-grade chrome chalcedony from Bolivia and Zimbabwe, and their gemmological properties are listed in Table I, chemical analyses are reported in Table II.

All the chrome chalcedonies are polycrystalline aggregates and they remain light during rotation in a polariscope. Their refractive indices lie between 1.530 – 1.550 (mostly 1.540) and a few of them exhibit a slight birefringence, caused by its semi-colloidal structure. The most useful property in distinguishing the chrome chalcedonies is their colour under the Chelsea filter. Both natural rough samples and the cut and polished intaglios are bright red under the Chelsea filter, while the artificially coloured Cr-chalcedony is only brownish-red and chrysoprase is nearly inert. The second useful test is to examine them by means of a hand spectroscope. Natural chrome chalcedonies show an emerald-like spectrum with a sharp line (at 684 nm) in the red and an absorption of the yellow and violet parts of the spectrum. The Mercury-gem and the intaglios show, in addition, complete absorption in the blue part of the spectrum, which may well be caused by higher iron contents. The spectrum of artificial Cr-chalcedony typically shows two diffuse lines
in the red. The curves from the UV-VIS spectrophotometer are shown in Figure 7. Surprisingly, artificial Cr-chalcedony is more easily recognised by hand spectroscope, because the two lines in the red show only as weak shoulders on the spectrophotometer trace.

Yellowish fluorescence in SWUV was observed on pale parts of a mtorolite vein, and opal could be present (see Table 1). Dark mtorolite has much weaker fluorescence than the light variety. Chrysoprase does not usually fluoresce, but Kammerling et al. (1990) described greenish-blue fluorescence of chrysoprase from Goias, Brazil. It was stronger in LW than in SWUV.

An attempt to identify the cause of colour was made during a microprobe study. Chromium content in a single specimen ranged from less than 0.10% to 0.95%. Unfortunately in a scanning electron microscope, the back-scattered electron

Figure 7: UV-VIS spectral curves of Cr-chalcedony from: 1) Bolivia, 2) Mercury intaglio, 3) Zimbabwe, and of dyed chalcedony 4).
images of the material look homogenous and it means that possible particles of a Cr-mineral are smaller than 100 nm. In some analyses, the Cr content has a positive correlation with contents of Mg and Al, but the results were not statistically significant.

Conclusions

To determine the origin of chrysoprase and chrome chalcedony is an interesting geochemical task. Both originate from Ni-Cr-rich ultrabasic rocks, where Ni is usually bound in olivine and Cr in spinels such as chromite and in pyroxenes such as chrome diopside. Olivine is the most unstable mineral in the ultrabasic rocks (i.e. it weathers first) whereas spinels are almost insoluble. This means that when the olivine weathers first, the SiO₂ is leached out together with Ni and precipitates nearby in fractures to form chrysoprase. Too much circulating water can cause complete leaching of SiO₂ and then no chrysoprase can form. Chrome chalcedony occurs probably after stronger weathering where pyroxenes have been dissolved too, thereby releasing their component Fe, Mg, Cr and Si to recombine under new conditions.

The original locality of the chrome chalcedony used for gems by the Romans is not known and could be very difficult to find. There is no evidence that the Bolivian material was available before recent times. However, the Romans were trading with the East African coast and probably could have obtained material from Zimbabwe, but mtorolite looks completely different from the chrome chalcedony used for Roman intaglias. There must have been another locality which has probably been mined out and forgotten. Two clues could help locate this unknown deposit: one is the relatively rich occurrence of Cr-chalcedony intaglias in the first to third century AD. Their quality fluctuates over a wide range. Older ones are very rare and their dating might even be incorrect. Several examples of Cr-chalcedony intaglias in younger decorative objects may well be a reflection of the very common reuse of antique stones throughout history. For example, the St Maurus reliquary dates from approximately the year 1200 and contains 66 carved gems, most of which are Roman intaglias. There are also possibilities that there was more than one period of mining at the original locality, and that there were later finds of similar stones elsewhere.

The second clue is the origin of Cr-chalcedony in strongly weathered ultrabasic rocks. In the ancient world, the most important accessible areas with such rocks occur in Turkey, Albania and the former Yugoslavia. Recently, Bank et al. (1997) described a cuttable green opal from Kutahya in Turkey. It has an RI between 1.438 and 1.442, SG 2.03-2.06 and, according to its spectrum, its colour is caused by trivalent chromium. The occurrence of Cr-chalcedony would be logical in the same region and it might be rediscovered by chance in the future.

Acknowledgements

I am grateful to Dr V. Zacek from the Czech Geological Institute in Prague for microprobe analyses, Dr C. Milisenda of the German Gemmological Institute in Idar-Oberstein for the spectrophotometer analyses, A. Petrov of Bolivia for the first chrome chalcedony specimens from there and for checking the English manuscript, Professor H. Bank from Idar-Oberstein for an old specimen of mtorolite from Zimbabwe, Professor W. Mican from Vienna for the loan of a gem and to A. Loke of the Netherlands for a recent specimen and information about the Zimbabwe locality. Mme. M. Broustet from Bibliotheque Nationale in Paris and Dr D. Stehlikova from Museum of Decorative Arts in Prague allowed me to study gems in their collections.

References


London Gem Tutorial Centre
Courses commencing in Autumn 1999

Accelerated FGA Courses
Nine month gemmology course – start date Monday 13 September
Theory and practical tuition on two days a week from 10 a.m. to 5 p.m.
The price of £4150 includes tuition, a basic instrument kit, Preliminary and Diploma course notes, exam fees and GAGTL membership for one year.

Sixteen month gemmology evening programme – start date Monday 6 September
Theory and practical tuition on two evenings per week from 6.30 p.m.
The price of £1150 includes tuition, Preliminary and Diploma course notes and examination fees.

Gem Diamond Courses
Four month DGA course – start date Thursday 9 September
Theory and practical tuition every Thursday from 10 a.m. to 5 p.m.
The price of £1622 includes tuition, a basic instrument kit, courses notes, examination fees and GAGTL membership for one year.

Eight month DGA evening programme – start date Wednesday 6 October
Theory and practical tuition one evening a week from 6.30 p.m.
The price of £720 includes tuition, course notes and examination fees.

For further details contact GAGTL Education on 0171 404 3334 (fax 0171 404 8843)
E-mail: gagtl@btinternet.com
A colorimetric study of the alexandrite effect in gemstones

Y. Liu¹, J.E. Shigley¹, E. Fritsch² and S. Hemphill¹

¹. Gemological Institute of America, Carlsbad, California, U.S.A.
². University of Nantes, Nantes, France

ABSTRACT: The variation in colour hue (the alexandrite effect) for gemstones that change colour under pairs of light sources can be measured by the difference in their calculated CIELAB hue-angle. Depending upon the measured hue-angle and the light sources used, gemstones that exhibit this phenomenon can be grouped into several categories. Colour measurement can provide support for visual observation to help the gemmologist determine if a gemstone displays this behaviour.

Keywords: alexandrite effect, colour, colour appearance, colour change, colour measurement

Introduction

Gemstones that change colour under different light sources are quite valuable and are much sought after in the jewellery trade. On identification reports issued by gem-testing organizations such as the GIA Gem Trade Laboratory, whether or not a gemstone exhibits a colour change can be an important explanatory comment. This phenomenon has been reported in some chrysoberyl (the important variety alexandrite), sapphire, spinel, pyrope-spessartine garnet, zircon, tourmaline and diaspore, to name several of the better-known examples (see, e.g. Schmetzer and Gübelin,

Figure 1: Three natural alexandrites as seen under two light sources – (a) a fluorescent daylight simulator and (b) an incandescent light. The three gemstones are, from the left, a 1.29 ct stone from Russia, and two stones from the Hematita mine in Brazil (1.06 and 1.32 ct). Photograph by Tino Hammid, copyright GIA.
1980a; Scarratt, 1980). It is described as a difference in the colour hue of the gemstone, and not a change in either its colour saturation or colour lightness. Quite pronounced colour changes are known (such as the violet-red to bluish-green change in alexandrite; see Figure 1). However, when the colour-hue change is less pronounced, it may be difficult to determine by visual observation whether a gemstone is actually changing colour.

Colour in gemstones is the colour appearance that a person sees. Within the past decade, however, both visual colour comparison instruments, and colour measurement instruments such as colorimeters, spectrophotometers, and imaging spectrophotometers have been introduced into the jewellery trade as an aid for gemstone colour determination (Nelson, 1986; Allaman, 1995). Measuring the colour of a three-dimensional, transparent, faceted gemstone presents challenges in comparison to working with flat, parallel-sided coloured samples. By measuring the interaction of light with a gemstone, the instruments calculate a location of the gem's colour in colour space (which location must then be translated into a word description of the colour to be of practical use in the jewellery trade). However, the question that is often unanswered or unclear when using these measurement instruments is the relation between the colour appearance we see, and the colour appearance of the gemstone that is being measured by the instrument. This is because the colour of a gemstone is due not just to its bodycolour, but also to optical effects due to its size, faceted shape, and other factors. In the table-up orientation, a faceted gemstone exhibits a pattern of colour appearances, and both the human observer viewing the gemstone, and the instrument measuring light coming from the gemstone, may not be ‘seeing’ the same colour appearance. To date, none of these instruments has yet attained widespread use in the jewellery trade. Nelson (1986) summarized many of the objections in the jewellery trade that have hindered the widespread acceptance of gemstone colour grading systems, and the use of colour comparison and measurement instruments.

The purpose of this article is to report on the results of a colour measurement study of gemstones that change colour under three CIE standard illuminants (theoretical light sources), which represent different types of actual light sources commonly used in the jewellery trade. The goals of this study are:

1. to further investigate if the calculated colour appearance of a gemstone, obtained by instrumental measurement, can be related to its colour appearance determined by visual observation, as has been suggested by the results of other gemmological studies;
2. to calculate by colour measurement the colour appearance changes of gemstones under several different pairs of standard illuminants; and
3. to determine if instrumental colour measurement can assist the gemmologist to decide if a gemstone is changing colour, when the visual appearance of the colour hue change is uncertain.

Background

Colour is one of the most important aspects that make up the beauty of a gemstone. It is a significant contributor to a gemstone’s value. Describing this colour in word terms that are widely understood and accepted in the jewellery trade is vital for both effective communication among jewellers and consumers, sustaining integrity in the jewellery trade, and helping to increase gemstone commerce. However, this remains a challenge for jewellers and gemmologists because of:

1. the difficulty that can occur of describing the colour seen in a gemstone in word terms;
2. variations in colour description terminology that are used in the trade;
3. the absence of practical colour-reference standards for visual comparison purposes that effectively simulate the wide range of colours seen in gemstones;
4. differences in the lighting and viewing conditions under which gemstones and their colour are observed; and
the lack of accepted boundaries in colour space for the ranges of colours of important gemstones (such as the boundary between red ruby and pink sapphire).

Colour is best described in words by means of three attributes – hue (what we normally think of as the colour, such as blue or green), saturation (the depth of the colour, described in terms ranging from, for example, faint to vivid), and lightness (from light to dark). Observation of gemstone colour should be done using controlled lighting and viewing conditions for the most consistent results (the gender, age, colour vision, and physiological state of the observer are also important). Visual colour perception is a complicated phenomenon, but a gemstone’s colour appearance arises from a combination of the illumination characteristics of the light source (the actual lamp or bulb), the lighting and viewing conditions used, the light absorbing and transmitting properties of the gemstone itself, and the light detection characteristics of the eye. One example of a procedure for observing and describing colour in gemstones can be found in the article on coloured diamonds by King et al. (1994). The scientific basis for observing colour in objects has been standardized and published by the Commission Internationale de L’Éclairage (CIE), an international organization of researchers in the areas of colour science, human vision, and lighting (see CIE, 1986). Descriptions of colour observation and measurement can also be found in standard textbooks such as Billmeyer and Saltzman (1981), Wyszecki and Stiles (1982), Nassau (1983), and Kuehni (1997).

For most gemstone species, a given specimen appears nearly the same colour when seen under different light sources. This results from the extraordinary ability of the human vision system to adapt chromatically over a short time to the changing lighting conditions when viewing an object. Chromatic adaptation means that our eyes adjust when observing an object under different light sources, so that the object’s colour often appears nearly constant as the lighting changes (such as an apple that appears red under daylight, incandescent light, and fluorescent light). A good discussion of both vision experiments and the constancy of colour appearance of objects is presented in the article by Land (1959).

Despite colour constancy and the chromatic adaptation of our vision system, some objects do appear to change colour to a certain degree when viewed under different light sources, although we are not normally aware of this change. Colour change in materials seems to have been known at least since the Middle Ages, when Leonardo da Vinci is believed to have first investigated it. This phenomenon has been investigated in some detail by scientists studying colour and colour vision (Ives, 1912; Helson, 1938; Helson and Jeffers, 1940; Judd, 1940; Helson et al., 1952).

Reports on colour-change gemstones are widespread in the gemmological literature (see e.g. Jobbins et al., 1975; Schmetzer and Gübelin, 1980a,b; Scarratt, 1980; Bosshart et al., 1982; Duroc-Danner, 1987; Bank and Henn, 1988, Dharmaratne, 1993; Federman, 1995). For the most part, these articles describe the gem material, and give an explanation of the features in the absorption spectrum that contribute to the colour-change behaviour. Because of its prominent colour change between daylight and incandescent light, the alexandrite variety of chrysoberyl gave its name to the ‘alexandrite effect’ (White et al., 1967). Although some gemmologists restrict this name only to gems that change from green (or yellowish- to bluish-green) in daylight to red or purplish-red in incandescent light, in the trade this name is often applied to gemstones that change between any two colour hues. At the GIA Gem Trade Laboratory (GIA-GTL), a gemstone that exhibits different hues under different light sources is described as showing a ‘colour change’ when this behaviour is not typical of all samples of that gem varieties (S. McClure, pers.comm., 1998). Certain purple gemstones, such as amethyst, always display different hues under different light sources; these gemstones are described at GIA-GTL as showing a ‘colour shift’.

A colorimetric study of the alexandrite effect in gemstones
Some results have also been published on the instrumental measurement of gemstones that exhibit the alexandrite effect. Different gemmological researchers have used several methods to calculate colour information based upon these instrumental measurements.

Schmetzer and Gübelin (1980a) used the difference in calculated dominant wavelength of a colour in the CIE 1931 (x,y) chromaticity diagram to represent the colour change in gem materials when going from daylight to incandescent light. In our opinion, there are several problems with this approach. First, the CIE 1931 (x,y) chromaticity diagram is not a uniform colour space, which means that equal distances between pairs of chromaticity coordinates do not represent equal differences in visual colour perception. Secondly, the change in dominant wavelength does not correspond uniformly to the colour-hue change that a person would see in an object. Finally, their method does not take into account the chromatic adaptation of the human vision system.

### Table 1: Colour-change materials examined during this study

<table>
<thead>
<tr>
<th>Sample no.</th>
<th>Material</th>
<th>Observed colour hue</th>
<th>Calculated hue-angle</th>
<th>Hue-angle change</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Incand.</td>
<td>Daylight</td>
<td>Fluor.</td>
</tr>
<tr>
<td><strong>Type 1 colour-change</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1422</td>
<td>Alexandrite, synthetic</td>
<td>P</td>
<td>G</td>
<td>yG</td>
</tr>
<tr>
<td>2316</td>
<td>Alexandrite, synthetic</td>
<td>P</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>2310</td>
<td>Diaspore</td>
<td>oY</td>
<td>gY</td>
<td>GY</td>
</tr>
<tr>
<td>2311</td>
<td>Diaspore</td>
<td>oR</td>
<td>yG</td>
<td>yG</td>
</tr>
<tr>
<td>730</td>
<td>Fluorite</td>
<td>V</td>
<td>gB</td>
<td>gB</td>
</tr>
<tr>
<td>2467</td>
<td>Garnet</td>
<td>P</td>
<td>gB</td>
<td>gB</td>
</tr>
<tr>
<td>2534</td>
<td>Garnet</td>
<td>rO</td>
<td>yO</td>
<td>yO</td>
</tr>
<tr>
<td>1369</td>
<td>Sapphire</td>
<td>gY</td>
<td>gY</td>
<td>yG</td>
</tr>
<tr>
<td>1326</td>
<td>Sapphire, synthetic</td>
<td>rP</td>
<td>V</td>
<td>P</td>
</tr>
<tr>
<td>2161</td>
<td>Spinel, synthetic</td>
<td>yG</td>
<td>G</td>
<td>bG</td>
</tr>
<tr>
<td>4644</td>
<td>Sapphire</td>
<td>yG</td>
<td>pV</td>
<td>P</td>
</tr>
<tr>
<td>4645</td>
<td>Sapphire, synthetic</td>
<td>pV</td>
<td>V</td>
<td>P</td>
</tr>
<tr>
<td>4646</td>
<td>Tourmaline</td>
<td>yG</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td><strong>Type 2 colour-change</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1327</td>
<td>Glass, synthetic</td>
<td>pR</td>
<td>pR</td>
<td>rO</td>
</tr>
<tr>
<td>1366</td>
<td>Glass, synthetic</td>
<td>oR</td>
<td>oY</td>
<td>O</td>
</tr>
<tr>
<td><strong>Type 3 colour-change</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1421</td>
<td>Sapphire, synthetic</td>
<td>rP</td>
<td>vP</td>
<td>P+G</td>
</tr>
<tr>
<td><strong>Type 4 colour-change</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1116</td>
<td>Garnet</td>
<td>rP</td>
<td>oR</td>
<td>Y</td>
</tr>
<tr>
<td>1119</td>
<td>Garnet</td>
<td>oY</td>
<td>oY</td>
<td>G</td>
</tr>
</tbody>
</table>

Codes for colour hues: P - purple, pV - purplish-violet, V - violet, gB - greenish-blue, bG - bluish-green, G - green, yG - yellowish-green, GY - green-yellow, gY - greenish-yellow, oY - orangy-yellow, yO - yellowish-orange, rO - reddish-orange, oR - orangy-red, pR - purplish-red, rP - reddish-purple, vP - purple with a hint of violet.

J. Gemm., 1999, 26, 6, 371–385
Boguth (1990) used a microscope and a multichannel spectrometer to record transmittance colours for an amethyst and an alexandrite, and then employed a method developed by Yonemura to calculate the colour change. This method does take into consideration chromatic adaptation, but the overall approach taken by Boguth still uses the dominant wavelength change to represent the colour change.

Liu et al. (1994) used calculated coordinates in the uniform CIELAB colour space to depict the behaviour of colour-change gemstones in terms of differences in their hue-angle and the extent of their colour change. They grouped the studied gemstones into several categories depending upon the pair of light sources used. In the CIELAB colour space, equal measured hue-angle differences approximately represent equal visual-perception hue changes (and take into account chromatic adaptation). The present article summarizes results from this study, presents some additional data, and addresses the three questions mentioned in the introduction. The alexandrite effect is described as a non-colour constancy phenomenon. It is also suggested that the combination of the response of the visual system to the incoming light from the gemstone under the different light sources, and the chromatic adaptation of the human visual system under different light sources, are the cause of the alexandrite effect.

**Materials and methods**

During this study, a variety of gemstones were re-examined (including natural and synthetic samples) that exhibited colour hue changes ranging from obvious to subtle. Table I lists 18 gemstones that are the subject of this article.

Visual observations of the colours of these samples were made independently by the authors both outdoors in daylight in southern California, as well as indoors using incandescent (tungsten filament) and fluorescence (daylight simulator) light sources using a MacBeth Judge II light booth. When outdoors, daylight strikes both the crown and pavilion facets of the gemstone from a number of angles, is reflected within the gemstone, and then it exits. Our observations were made by holding the sample at arm’s length (about 60 cm) and looking straight down on the table and crown facets, to judge a colour hue that would be best representative of the overall face-up colour appearance. For the incandescent and fluorescent light sources, observations were made in the light booth that had a neutral grey interior, with the light source directly above the sample at a distance of about 30 cm, and the observer looking at a 45 degree angle from the vertical, and at a distance of about 30 to 45 cm from the gemstone. Again, the representative colour hue was judged from the face-up orientation of the gemstone. In cases where there was a disagreement between observers about a sample’s colour hue, the gemstone was examined by both observers together to reach an agreement about the face-up colour appearance and the
Figure 3: The optical arrangement for measurement of gemstone colour using an integrating sphere mounted in the Hitachi U-4001 spectrophotometer. Numbers refer to: (1) the incident light beam, (2) focusing lens, (3) sample position, with light striking perpendicular to the polished table facet, (4) integrating sphere, (5) reference light beam, and a (6) white reference tile. The measurement resolution is 1 nm. Light striking perpendicular to the table facet is internally reflected within the gemstone; the portion of this light that exits through the table (but not through the crown facets) is captured by the integrating sphere.

hue term(s) to describe this colour. No colour-reference standards were used for visual comparison to our samples. Their colours were described with simple hue terms (such as blue, greenish-yellow, etc.). For the 18 samples, colour-hue changes were seen between one or more pairs of these three light sources, but not necessarily between each pair of sources. A colour change can sometimes be difficult to observe in a gemstone because of its faceted shape, the saturation or lightness of the colour, or the lighting and viewing conditions used.

In the CIELAB colour space, the colour hues are arranged in a circle, and their locations are indicated by an angle (up to 360 degrees), known as the hue-angle (Figure 2). Colour measurement data on the hue-angle were calculated from reflectance spectra recorded with an Hitachi U-4001 UV-VIS-NIR spectrophotometer for most of the samples. The wavelength range for these spectra was 300 to 830 nm; a bandwidth of 1 nm and a scan speed of 300 nm per minute were used. Figure 3 shows the optical arrangement of the measurement experiment. Unpolarized incident light was focused on crown facets of the sample (primarily the table facet) by means of a lens (75 mm focal length); no incident light entered through the pavilion facets. The size of the incident light beam was smaller than the size of the table facet. An integrating sphere mounted within the sample chamber of the spectrophotometer permitted the capturing of most of the light coming from the crown facets of the sample.

Spectra were recorded with the gemstone in the reflectance position (as shown in Figure 3), which corresponds closely to how one visually observes a polished coloured gemstone in a face-up orientation. To achieve the closest relation between the observed and the measured colour for a sample, the light source, the gemstone sample, and the ‘observer’ (either the eye or the instrument
detector) were arranged in nearly the same relative positions with respect to one another (although differences existed between how the light struck the sample outdoors and within the spectrophotometer). In the reflectance position, we attempted to capture light that had been transmitted and reflected through the sample. Light specularly reflected from the surface of the table facet left the integrating sphere through the open port, and was not included in calculating the recorded spectra. Thus, our measurement geometry differed slightly from our observation geometry, principally in terms of how the incident light illuminated the sample.

Using the measured reflectance spectral values recorded every 1 nm across the 400–700 nm range, the CIELAB values L*, a*, and b* were calculated. These numbers were then used to calculate the hue-angle (h) of the sample's overall colour appearance by means of a version of the SpectraCalc™ software programme (Galactic Inc.) that was modified by us. The hue-angle (h) is calculated by the following equation:

\[ h = \arctangent \left( \frac{b^*}{a^*} \right) \]

The absolute hue-angle difference (\( \Delta h \)) between two colour hues for the same sample under light sources 1 and 2 is:

\[ \Delta h = |h_1 - h_2| \]

This software programme can calculate coordinates of a measured colour:

1. in several colour spaces (including CIELAB);
2. using various CIE standard illuminants; and
3. a 2-degree or a 10-degree standard colorimetric observer (which is a graph of the spectrum of the colour-matching curves of an average group of human observers with normal colour vision, using a 2-degree or a larger 10-degree angular field of view). Because of the small diameters of our samples, the hue-angle calculations reported here were made with a 2-degree standard observer.

In contrast to light sources, which are daylight or actual lamps with measurable spectral power distributions (SPDs), illuminants are not actual lamps, but are mathematically defined SPDs that are routinely used in colour-science calculations. In this study, three CIE standard illuminants were employed to represent the three light sources we used to observed the colour changes in our samples. The SPDs of the three illuminants are shown in Figure 4. By calculating the hue-angle of the colour hue of a sample using each of these three illuminants, hue-angle differences between pairs of illuminants could be derived. These calculated differences in hue-angle would then be an indication of the possible extent of a colour change, if any, that could be observed in the sample under the corresponding pair of light sources.

Illuminant A represents light emitted by a 'blackbody' radiator at an absolute colour temperature of 2856 Kelvin (corresponding to an incandescent (tungsten filament) light source). The D illuminants represent one of the several phases of natural daylight, each with a particular correlated colour temperature (such as D65 or D75). Illuminant D65, representing average daylight with a correlated colour temperature of 6504 Kelvin, was used here. The CIE has not recommended an actual light source (a lamp) that corresponds to any of the D illuminants.

Fluorescent daylight simulators are widely used in the jewellery trade for observing the colour of gemstones indoors; they are often the only light source (other than daylight) that is available for gemstone display purposes. As shown in Figure 4, although they are commonly referred to as 'daylight simulators', these fluorescent lamps have very different spectral power distributions in comparison to the SPD of natural daylight. The CIE has recommended twelve different F illuminants to represent a variety of typical fluorescent lamps. Illuminant F7, with a correlated colour temperature of 6500 Kelvin and a colour rendering index of 90 (a measure on a scale from 0 to 100 of the accuracy of a light source to correctly render the colour of Munsell...
The SPD of an actual light source differs from that of the corresponding illuminant; furthermore, the SPD of the former can vary over time as a lamp ages. The SPD of illuminant D65 is very close to that of natural daylight. Illuminants A and F7 are explained in the text.

Comparison of the observed colour hues and the calculated hue-angle values indicates that there is general agreement between our colour observations and the measured data obtained with the spectrophotometer for the 18 samples.

For a given light source, the colour hues of our samples covered a wide range, as did their hue-angles for the corresponding standard illuminants. By comparing the hue-angles of a given sample obtained for different illuminants, the values of the hue-angle difference range up to almost
Figure 5: The hue circle depicted as a linear graph to show the direction and extent of colour change as calculated from hue-angle differences for the samples included in this study. For each sample, the measured hue-angles for illuminants A, D65 and F7 are indicated by a circle, a square, and a triangle symbol, respectively. When changing from illuminant A to D65 and F7, the direction of the hue-angle change for each sample is toward the 180 degree value. In general, this corresponds to a gemstone that is more 'red' or 'purple' in incandescent light, and more 'yellow', 'green' or 'blue' in daylight or fluorescent light.

180 degrees (the greatest possible difference). Since in most cases the hue-angles appear to correlate tolerably well with the observed colour hues in our samples, we suggest that the magnitude of the difference in the hue-angle can be used as indication of the extent of colour change that the samples will exhibit between the corresponding light sources.

The data in Table 1 illustrate observations made previously by others that the calculated hue angles of the samples always move in a direction toward the 180 degree value (toward a green hue) when the illuminant changed from A to D65 or F7 (corresponding to a change from incandescent to daylight or fluorescent light), as illustrated in Figure 5. However, the extent of the hue-angle change, and its location on the hue circle, varied from one sample to the next, as shown in this same figure.

As a test of our colour measurement methodology, we carried out ten repeated colour reflectance measurements of the same sample of a synthetic glass (#2088; a round-brilliant cut weighing 2.55 ct, and measuring 9.3 x 9.3 x 5.6 mm) to check the precision of our results. As shown in Table II, the standard deviations in the hue-angle changes for each of the three pairs of illuminants are each less than 4 degrees. These small values indicate that our measurements for this sample are reproducible to establish the colour hue and the hue-angle, since such small variations in hue-angle could not be recognized visually by a person relying on their memory to remember a colour (see Burnham and Clark,
Table II: Precision of hue-angle measurements.

<table>
<thead>
<tr>
<th>Test</th>
<th>Hue-angle change</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A and D65</td>
<td>D65 and F7</td>
<td>A and F7</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>7.7</td>
<td>63.7</td>
<td>56.0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>6.5</td>
<td>69.3</td>
<td>62.9</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>6.9</td>
<td>70.7</td>
<td>63.8</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4.8</td>
<td>61.8</td>
<td>57.0</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>4.1</td>
<td>65.1</td>
<td>61.1</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>5.2</td>
<td>67.2</td>
<td>62.0</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>8.1</td>
<td>70.3</td>
<td>62.2</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>8.8</td>
<td>72.1</td>
<td>63.3</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>6.2</td>
<td>63.8</td>
<td>57.5</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>4.7</td>
<td>63.2</td>
<td>58.5</td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>6.3</td>
<td>66.7</td>
<td>60.4</td>
<td></td>
</tr>
<tr>
<td>SD</td>
<td>1.6</td>
<td>3.7</td>
<td>2.9</td>
<td></td>
</tr>
</tbody>
</table>

Calculated differences in hue-angle (measured in degrees in CIELAB colour space) between pairs of illuminants A, D65 and F7, for a colour-change glass (#2088). The hue-angle changes were obtained by ten separate measurements of the reflectance spectra of this glass. Between measurements, the Hitachi spectrophotometer was recalibrated, and the glass sample was repositioned in the instrument.

1960). However, with similar experiments with polished gemstones of smaller diameter (4 mm or less), we found less repeatability with the colour measurements. We attribute this to the difficulty in positioning smaller samples in exactly the same position each time in the spectrophotometer.

While measurement of a sample’s colour hue by this method seems promising, we could not correlate the observed colour changes in our samples seen under different light sources to changes in either their saturation or lightness calculated from reflectance spectral data. Based upon our experiments to date, the method discussed here seems best suited for gemstones or other samples that possess relatively saturated colours (with a chroma value of 5 or more in the CIELAB colour space). Samples that exhibit very pale, desaturated colours have hues located near the origin (i.e. the central ‘white point’) in colour space. While the calculated hue-angle changes of these materials can be artificially very large, these values are meaningless in such instances since any change in their very pale colour would not be perceptible to the eye.

Discussion

Since the CIELAB colour space is a uniform colour-order system, equal differences in hue-angle correspond to equal differences in observed colour hue. Therefore, the hue-angle change in the CIELAB colour space can be used to quantitatively characterize the change in a sample’s colour hue for pairs of the three CIE standard illuminants and the corresponding light sources we selected. Use of the instrumental method described here can help support visual observations and the verbal description of a colour-change in gemstones.

One goal of this study was to establish an objective (observer independent) means for determining if a particular gemstone actually changes colour when viewed under different light sources. Based upon a published study of the colour appearance change of opaque Munsell colour chips under different light sources (Helson et al., 1952) and our own experiments with coloured gemstones, we previously selected a 20 degree hue-angle change as our criterion for determining whether a sample would display an observable colour change between a pair of light sources (Liu et al., 1994). If the hue-angle change for a sample between any pair of the three CIE standard illuminants (A, D65, and F7) was equal to or greater than 20 degrees, and the colour saturation of the sample was suitably high (a perceptible saturation of chroma level 5 or higher), we would expect to see a colour change in the sample when viewing it under one and then the other of the corresponding pair of light sources. By subtracting pairs of hue-angle values for the samples listed in Table I, it can be seen that all of these samples exhibited a calculated hue-angle change of 20 degrees or more for at least one pair of the three CIE standard illuminants (and in almost all cases,
Figure 6: Hue-angle changes of specific samples, depicted on the a* b* plane of the CIELAB colour space (refer again to Figure 2), for four types of colour change. In each of these sketches, the point marked 'A' represents the hue-angle of the sample for illuminant A, the point marked 'D' is for illuminant D65, and the point marked 'F' is for illuminant F7. The colours of these samples under the different light sources, and the extent of their colour change between pairs of light sources, can be predicted from these sketches. The distance of the point from the origin of the diagram also provides an indication of the saturation of the colour of the particular sample that is represented by the point. These sketches provide a means of illustrating the difference between the types of colour-change behaviour.

we could see a hue change in the sample between the corresponding light sources). It can also be seen from this table that the hue-angle changes vary up to almost 180 degrees (the maximum value), with a larger hue-angle difference representing a more pronounced change in colour hue. Finally, a sample may exhibit a hue-angle change of 20 degrees or more for one pair of CIE standard illuminants, but not for another pair (i.e. the sample would be expected to change colour between one pair of light sources, but not between another pair).

It should be emphasized that we do not consider the 20 degree hue-angle value as a final or absolute criterion of a colour-hue change in a gemstone. It is an indicator value of the extent of a hue-angle change, above which a colour change could be observed in the samples we examined. If a criterion...
describing a more obvious colour change is preferred, a 30 degree hue-angle change could be used.

The observation and measurement of colour-change gemstones led Liu et al. (1994) to define four categories or types of colour change, based upon the 20 degree hue-angle change criterion and the three CIE standard illuminants listed above. Both illuminants A and D65 can each be considered as approximating a thermal radiator in the visible region of the spectrum. The difference in their SPDs is mainly due to their colour temperature difference (see again Figure 4). Illuminants D65 and F7 have the same colour temperature, but different SPDs. Compared to illuminant A, illuminant F7 has both a higher colour temperature and a spectrum that contains sharp emission lines. Therefore, if the hue-angle change between illuminants A and F7 is smaller than 20 degrees, theoretically there is little possibility that the hue-angle changes between A and D65, and between D65 and F7, could be larger than 20 degrees. For this reason, Liu et al. (1994) suggested that the hue-angle change for colour-change gemstones should always be greater than 20 degrees for the illuminant pair (A–F7). The criteria for these four categories are summarized in Table III. The four types can be described as follows:

Type 1. This category represents the traditional 'alexandrite effect' recognized by gemmologists; it is also the type of colour change found most commonly among our study samples (see Table I). It represents a situation of a sample’s colour change between illuminants that differ in their SPD and in their colour temperature. Perhaps not surprisingly, this type 1 colour change can be quite pronounced, with colour hues on almost opposite sides of the hue circle (with hue-angle changes approaching 180 degrees).

Type 2. This type of colour change was found in three samples of faceted glass. In this situation, similar colours are seen in the sample under either daylight or incandescent light sources, but a different colour occurs under a fluorescent light source. In this category, the extent of the colour change is more moderate, with hue-angle changes from 40 to 90 degrees for the samples measured so far.

Type 3. Samples belonging to this category will exhibit a colour change between any pair of the three illuminants, but the extent of the hue change will be moderate. So far only one synthetic sapphire has been found to display this type of colour change.

Type 4. This type of colour change occurs only between fluorescent and incandescent light sources that have a suitably large colour temperature difference. At best, the extent of the colour change in this category is very weak, with hue-angle changes of only 20 to 30 degrees.

As additional colour-change samples are investigated, we expect to find further representatives of these categories of colour-change behaviour. The diagrams in Figure 6 illustrate the hue-angle changes or samples that fall into these colour-change categories. Figure 7 presents three colour-corrected photographs of representative gemstones from this study that are examples of the four colour-change types mentioned above. These
photographs illustrate how different colour changes in gemstones can occur between different light sources.

## Conclusion

In this study, we have explored the use of a spectrophotometer for colour measurement to investigate the colour-change behaviour of some gemstones and other materials. Many descriptions of such gemstones have been published, which often give explanations of the spectral causes of this phenomenon. Other gemmological researchers have preceded us in exploring the use of colorimeters and spectrophotometers for gemstone colour measurement, and some of their results have been published. While we cannot claim that our use of a spectrophotometer for gemstone colour measurement is either new or original, we do claim that:

1. the geometry of colour measurement should approximate as closely as possible the geometry of observing colour in gemstones (as attempted here), if the results of the two methods are to be comparable;

2. the reflectance measurement geometry gives results that are more consistent with the observation of face-up colour in faceted gemstones, especially for the colour hue (but not necessarily for the colour saturation or colour lightness); and

3. how colour measurement data are graphically depicted in colour space is important in understanding the relationship between the results of colour measurement and colour observation.

We have shown how the use of the CIELAB uniform colour space to depict hue-angle relationships can be used to develop a minimum hue-angle difference (20 degrees) criterion for samples that would be expected to display a colour-hue change perceptible to the eye. By tabulating hue-angle values for gem materials with three CIE standard illuminants that correspond to the daylight, incandescent, and fluorescent...
light sources used in the jewellery trade, we demonstrate that the traditional 'alexandrite effect' is more complicated than previously recognized by gemmologists. Gem samples may not display a change of colour under one pair of light sources, but may display a change between another pair of light sources when their hue-angle difference is greater than 20 degrees. Examples of gemstones are given of the different types of colour-change behaviour, along with criteria that could be used to assign the colour-change behaviour of other gem materials to one of these types. The most practical benefit of this study is to illustrate how colour reflectance measurement data can assist the gemmologist who, when examining a gemstone and thinking it may change colour under different light sources and not wanting to solely rely on his or her colour memory, wishes to have some independent confirmation that the gemstone is actually displaying a colour change, which could increase its market value. Gemstones exhibiting an attractive alexandrite effect, such as the group of garnets shown in Figure 8, will always be in demand in the jewellery industry.

Acknowledgements

The authors thank the following individuals for supplying colour-change gemstones or useful information for this study: G. Cankur of Miami Beach, Florida; D. Clary of Los Angeles, California; Dr. E. Gübelin of Lucerne, Switzerland; T. Hammid of Los Angeles, California; A. Hodgkinson of Glasgow, Scotland; the late R. C. Kammerling of the GIA Gem Trade Laboratory, Santa Monica, California; S-P. Kanaan of Paris, France; the late D. Knapp; and Dr G.R. Rossman of the California Institute of Technology, Pasadena, California. S. McClure, manager of gem identification in the GIA Gem Trade Laboratory, Carlsbad, California, provided comments on the practices of describing colour-change gemstones. An earlier version of this article benefited from comments by Dr George Rossman and Dr Karl Schmetzer.

Figure 8: A group of eight colour-change garnets (0.74 to 5.32 ct) seen under (a) a fluorescent daylight simulator and (b) an incandescent light (right). Photo by Tino Hammid, copyright GIA.
References


Helson, H., and Jeffers, V.B., 1940. Fundamental problems of color vision. II. Hue, saturation, and lightness of selective samples in chromatic illumination. Journal of Experimental Psychology, 26, 1-27


Ives, H.E., 1912. The relation between the colour of the illuminant and the colour of the illuminated object. Transactions of the Illumination Engineering Society, 7, 62-72


Judd, D.B., 1940. Hue, saturation, and lightness of surface colors with chromatic illumination. Journal of the Optical Society of America, 30, 2-32


BOOK SHELF - NEW TITLES

Understanding Jewellery by D. Bennett and D. Mascetti £39.95
The Fabergé Imperial Easter Eggs by T. Fabergé, L.G. Proler and V.V. Skurlov £65.00
Cameos Old and New by A.M. Miller £18.99

Gemmological Instruments Limited,
27 Greville Street,
London EC1N 8TN.
Tel: 0171-404 3334
Fax: 0171-404 8843

A colorimetric study of the alexandrite effect in gemstones
ABSTRACT: The hue of a tourmaline from the Umba Valley, Tanzania, changes from green to red with increases in path length of light through the material. This hue change phenomenon, called the 'Usambara effect', is different from any colour-change effect previously described in gemstones. Colorimetric methods have been used to analyze this tourmaline. Results of this study suggest that the Usambara effect is a complex phenomenon including effects of both path length and the colour change observed under different light sources (the alexandrite effect).

Keywords: Alexandrite effect, colour, colour change, light, tourmaline, Usambara effect

Introduction

Halvorsen and Jensen (1997) described a reportedly new colour-change effect, which they called the Usambara effect, in gem tourmaline from the Umba Valley, Tanzania. These tourmaline samples are strong yellow- to blue-green when viewed separately in transmitted light, but when two are superimposed over one another, their combined colour becomes red with no change in sample orientation or type of illumination. These authors attributed this effect to a change in the path length of light through the material.

In this study, we re-examined samples of this gem tourmaline, and have analyzed their colour-change behaviour using colorimetric methods as described in Liu et al. (1994). Although Halvorsen and Jensen (1997) concluded that the Usambara effect is due to changes in path length, they stated that the observed colours could be mildly modified by the type of illumination, which is the well-known alexandrite effect. We present here a more complete explanation using colorimetric calculations of both effects in this material, and demonstrate how the alexandrite effect predominates over a certain range of sample thicknesses, while the Usambara effect becomes more pronounced as the sample thickness increases beyond this range. According to K. Nassau (pers.comm., 1998), this gem tourmaline provides an interesting example of how several different causes can give rise, either separately or in combination, to colour changes in a gem or mineral.

Materials

Several rough tourmaline crystal fragments from the Umba Valley were examined (Table 1). Sample #4140 weighs 13.21 ct, has parallel polished surfaces which
Table I: The properties of the three gem tourmaline samples.

<table>
<thead>
<tr>
<th>Sample #</th>
<th>Weight (ct)</th>
<th>Colour</th>
<th>Thickness</th>
<th>Shape</th>
</tr>
</thead>
<tbody>
<tr>
<td>4140</td>
<td>13.21</td>
<td>Green</td>
<td>6.25</td>
<td>Parallel Surfaces</td>
</tr>
<tr>
<td>4427</td>
<td>16.14</td>
<td>Green</td>
<td>6.79</td>
<td>Rough</td>
</tr>
<tr>
<td>4428</td>
<td>48.16</td>
<td>Yellowish-green</td>
<td>11.68</td>
<td>Rough</td>
</tr>
</tbody>
</table>

Note: 1. Transmittance colour over a daylight simulator.
2. Maximum thickness in mm.

were specially prepared for this study, and is approximately 6.25 mm thick. The gemmological properties, colours, and spectra of the sample are the same as the samples described by Halvorsen and Jensen (1997). Figure 1 shows two tourmaline samples viewed by transmitted light over a daylight simulator. Sample #4427 weighs 16.14 ct, and with a maximum thickness about 6.79 mm, its colour appears green. Sample #4428 weighs 48.16 ct, has a maximum thickness about 11.68 mm, and its transmittance colour appears yellowish-green. When sample #4427 is placed on the top of sample #4428 to increase the total path length, their combined transmittance colour changes to dark red (see Figure 2). Figure 3 shows the spectral transmittance curve of tourmaline sample #4140, which was obtained using a Hitachi U-4001 spectrophotometer with an integrating sphere. A wavelength range from 300 nm to 830 nm was scanned with a wavelength interval of 1 nm. Colorimetric data were obtained using the Spectracalc software from Galactic Industries Corporation.

**Results**

**Transmittance Calculations**

The intensity of transmitted light can be calculated by Bouguer’s law:

\[ I(\lambda) = I_0(\lambda)p(\lambda)e^{-\alpha(\lambda)l} \]  

where \( \lambda \) is the wavelength, \( I(\lambda) \) is the intensity of the transmitted light, \( I_0(\lambda) \) is...
intensity of the incident light, \( p(\lambda) \) is reflection factor which takes into account the light loss due to multiple reflections at the parallel surfaces of the specimen (Liu et al., 1991), \( \alpha(\lambda) \) is the absorption coefficient of the material, and \( t \) is the sample thickness. The measured refractive indices of this tourmaline as reported by Halvorsen and Jensen (1997) are 1.644 and 1.622. Since the dispersion of the tourmaline is relatively small, we used a value of 1.63 as an approximate refractive index in the visible range to calculate the surface reflection factor [calculated by the equation \( p = 2n/(n^2 + 1) \)], which is about 0.89. The absorption coefficient varies with wavelength. The transmittance \( T(\lambda) \) varies exponentially with \( \alpha(\lambda) \) multiplied by sample thickness according to the formula:

\[
T(\lambda) = 0.89e^{-\alpha(\lambda)t}
\]

If the transmittance is measured for various wavelengths at one known thickness (in this case, the 6.25 mm-thick sample #4140, with results plotted in Figure 3), then the absorption coefficient of this tourmaline can be calculated using equation (2) in the form:

\[
\alpha(\lambda) = \frac{1n (T/0.89)}{6.25} (3)
\]

For the purpose of this study, we wanted to understand the effect of increasing path length on the colour change of this tourmaline, and since only a limited amount of actual gem tourmaline was available from the deposit in the Umba Valley, we used the colorimetric method to calculate colour coordinates for this tourmaline as if it existed in polished pieces of several different thicknesses.

Since the absorption coefficient is a constant for each wavelength, Beer's equation can then be used to calculate the transmittance \( T(\lambda) \) for any number of thicknesses of this tourmaline material, as
shown by the curves in Figure 4 (for 1.0, 2.0, 4.0, 8.0 and 12.0 mm-thick samples). This figure shows that there are two transmittance bands in the visible range, one centred at 540 nm (a middle wavelength band referred to here as the 540 nm band), and the other in the region above 650 nm (a long wavelength band). Since the spectral transmittance of the band centred at 540 nm is reduced much faster than that of the long wavelength band due to Beer's law with increasing sample thickness (or path length), only the long wavelength band is left when the thickness of the tourmaline is over 10 mm.

**Colorimetric Calculations**

The CIELAB colour space is the most used uniform colour space for representing colour appearance, and equal colour differences approximately represent equal visual colour perception differences. The calculation of $L^*$, $a^*$, and $b^*$ is based on the opponent colour vision model and chromatic adaptation:

$$L^* = 116 \left( \frac{Y}{Y_n} \right)^{1/3} - 16$$

$$a^* = 500 \left[ \left( \frac{X}{X_n} \right)^{1/3} - \left( \frac{Y}{Y_n} \right)^{1/3} \right]$$  \hspace{2cm} (4)

$$b^* = 200 \left[ \left( \frac{Y}{Y_n} \right)^{1/3} - \left( \frac{Z}{Z_n} \right)^{1/3} \right]$$

where $X$, $Y$, and $Z$ are the CIE tristimulus values of the coloured object calculated from data measured by a colorimeter or spectrophotometer, and $X_n$, $Y_n$, and $Z_n$ are the similar values obtained for a standard white object (CIE, 1986). In CIELAB colour space, $L^*$ represents lightness; $+a^*$ represents ‘redness’, $-a^*$ is ‘greenness’; $+b^*$ is ‘yellowness’, and $-b^*$ is ‘blueness’. The CIELAB colour space includes the von Kries type chromatic adaptation $X/X_n'$, $Y/Y_n'$, and $Z/Z_n$ (CIE, 1986). In the CIELAB colour space, the hue-angle is used to represent the hue of a colour. The hue-angle is given by:

$$h = \arctan \left( \frac{b^*}{a^*} \right)$$  \hspace{2cm} (5)
Table II: Calculated CIELAB data of tourmaline sample #4140, if it were fashioned into pieces of different sample thicknesses.

<table>
<thead>
<tr>
<th>t (mm)</th>
<th>L*</th>
<th>a*</th>
<th>b*</th>
<th>C</th>
<th>h</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>67.77</td>
<td>-8.92</td>
<td>14.69</td>
<td>17.19</td>
<td>121.3</td>
</tr>
<tr>
<td>2.0</td>
<td>47.24</td>
<td>-12.18</td>
<td>21.27</td>
<td>24.51</td>
<td>119.8</td>
</tr>
<tr>
<td>4.0</td>
<td>20.66</td>
<td>-10.47</td>
<td>22.42</td>
<td>24.75</td>
<td>115.0</td>
</tr>
<tr>
<td>6.0</td>
<td>5.97</td>
<td>-3.88</td>
<td>8.85</td>
<td>9.66</td>
<td>113.7</td>
</tr>
<tr>
<td>8.0</td>
<td>1.38</td>
<td>0.14</td>
<td>2.19</td>
<td>2.20</td>
<td>86.3</td>
</tr>
<tr>
<td>10.0</td>
<td>0.37</td>
<td>0.60</td>
<td>0.60</td>
<td>0.85</td>
<td>45.3</td>
</tr>
<tr>
<td>12.0</td>
<td>0.12</td>
<td>0.44</td>
<td>0.20</td>
<td>0.48</td>
<td>24.3</td>
</tr>
</tbody>
</table>

Note: t is the thickness, C is the saturation, and h the is hue-angle. Standard D65 illuminant. Maximum chroma is about 24.75 at the thickness of 4.0 mm.

The hue-angle has been used to explain the alexandrite effect (Liu et al., 1994).

Table II shows calculated CIELAB data of the tourmaline sample #4140 using the CIE standard D65 illuminant, which represents average daylight, at different thicknesses. Figure 5 illustrates the colour trace of the tourmaline sample with changes in the thickness under the D65 illuminant. The hue-angles and hue-angle changes under CIE standard illuminants D65 and A are tabulated in Table III. Figure 6 shows the hue-angle change of the sample with changes in the thickness.

Table III: Hue angle (h) and hue-angle change (Δh) (in degrees) data of tourmaline sample #4140, if it were fashioned into pieces of different sample thicknesses, using CIE standard illuminants D65 and A.

<table>
<thead>
<tr>
<th>t (mm)</th>
<th>h(D65)</th>
<th>h(A)</th>
<th>Δh</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>121.3</td>
<td>102.6</td>
<td>18.7</td>
</tr>
<tr>
<td>2.0</td>
<td>119.8</td>
<td>100.5</td>
<td>19.3</td>
</tr>
<tr>
<td>4.0</td>
<td>115.0</td>
<td>92.5</td>
<td>22.5</td>
</tr>
<tr>
<td>6.0</td>
<td>113.7</td>
<td>70.5</td>
<td>43.2</td>
</tr>
<tr>
<td>8.0</td>
<td>86.3</td>
<td>42.2</td>
<td>44.1</td>
</tr>
<tr>
<td>10.0</td>
<td>45.3</td>
<td>26.0</td>
<td>19.3</td>
</tr>
<tr>
<td>12.0</td>
<td>24.3</td>
<td>19.3</td>
<td>5.0</td>
</tr>
</tbody>
</table>

Note: t is thickness, h(D65) is the hue-angle under illuminant D65, h(A) is the hue-angle under illuminant A, and Δh is the hue-angle change between illuminants D65 and A.

Discussion

This study briefly mentions several important topics relevant to the colour of gemstones:
1. colorimetric calculations,
2. colour change with the change in sample thickness,
3. the alexandrite effect, and
4. colour visual perception.

A discussion involving all four topics is necessary to understand the colour effects observed in this gem tourmaline.

Figure 5: The hue circle and the colour trace of the tourmaline sample #4140 in the CIELAB colour space (plotted according to the hue-angle and saturation values in Table II). Increases in saturation occur with greater distances from the origin. The colour trace moves clockwise from zero saturation for the thickness of 0 mm, to a maximum in saturation of about 25.0 and a hue-angle of about 117.5 degrees for thickness of 3.0, to saturation of 0.85 and hue-angle of 45.3 degrees for thickness of 10.0 mm. When the relative thickness becomes infinite or very thick, the saturation again becomes zero (the sample becomes black).

J. Gemm., 1999, 26, 6, 386–396
Figure 6: The hue-angle change of the tourmaline sample between CIE illuminants D65 and A with changes in sample thickness. The dashed line is the 20 degree line. According to a convention proposed by Liu et al. (1994), the tourmaline shows an 'alexandrite effect' when the hue-angle change is greater than 20 degrees (for a sample thickness from 3.5 to 9.9 mm when the hue-angle change is above this line).

Colorimetric calculation

The hue of a gemstone can be accurately represented by the hue-angle in the CIELAB colour space. As such, the calculated hue-angle can be used to investigate colour-change effect in materials (Liu et al., 1994, and previous paper in this issue). From Table II, we know that the hue-angle of the tourmaline under D65 illumination decreases as the sample thickness increases. The hue-angle is 121.3 degrees with a thickness of 1.0 mm, and it decreases to 115.0 degrees with the thickness of 4.0 mm. Hue-angles between 121.3 degrees and 115.0 degrees represent the colour range with a yellowish-green hue (again see Figure 5). When the thickness increases to 8.0 mm, the hue-angle is 86.3 degrees, which represents yellow. The hue-angle is 45.3 degrees when the thickness is 10.0 mm (an orangy-red hue), and when the thickness is 12.0 mm, the hue-angle is about 24.3 degrees, representing red.

The colour change caused by a light-path change

All coloured materials change colour with changes in thickness or colourant concentration, and most of them also change
Figure 7: A hue change with colourant concentration or thickness change can be seen in many dyes, such as this commercially available yellow food colour. Its hue changes from yellow, to orange, and to red with increasing colourant concentration. Photograph by Maha DeMaggio.

hue (Nassau, 1983, 1997; Kuehni, 1997, 111-4). A chrome alum solution appears green in a thinner sample, and purplish-red in a thicker sample, which has been referred to dichromatism (Webster, 1994, p. 678). This phenomenon is similar to the colour change of the gem tourmaline described by Halvorsen and Jensen. Figure 7 shows the colour change of a common type of food dye (for colouring Easter eggs) with a change in its colourant concentration. For a low concentration, the solution appears yellow. With an increase in concentration, the colour changes from yellow to orange, and then to red. This illustrates a colour-hue change with an increase in colourant concentration (Nassau, 1983). The hue and saturation changes of dye solutions with changes in concentration are usually represented by their colourant traces, which are the curves in a CIE colour space connecting the chromatic coordinates of the colourants at different concentrations. For materials other than colourants, similar curves called colour traces are used to represent hue and saturation changes with changes in the path length of light through them (Kuehni, 1997, 111-4).

The 'Usambara effect' is typical of the colour change caused by a change in sample thickness or concentration. With increase in the sample thickness of this tourmaline, the 540 nm band becomes smaller and smaller compared to the intensity of the long wavelength band (again see Figure 5). The tourmaline, therefore, appears increasingly red the thicker the sample. When the thickness is greater than 10.0 mm, only the long wavelength band is transmitted. The stone appears red as long as the light source has a red component, regardless of the kinds of light sources used. If the light source has no red component, this tourmaline will appear black when its thickness is more than 10.0 mm.

The colour trace curve in Figure 5 is similar to that of some dyes that change hue and saturation with changes in concentration or thickness (Kuehni, 1997, 111-4). The saturation of the colour of the tourmaline first increases with increases in thickness until it reaches a maximum at about 4.0 mm; then the saturation decreases with increases in thickness.

The alexandrite effect

With increase in the thickness, the hue-angle difference between CIE illuminants D65 and A also changes. According to the 20 degree hue-angle change criterion suggested by Liu et al. (1994), the alexandrite effect between CIE illuminants D65 and A is shown by this tourmaline in sample thicknesses between 3.5 and 9.9 mm (again see Figure 6), with a maximum alexandrite effect when its thickness is about 8.5 mm.

Human colour perception

Webster (1994, 673, Fig. 31-2) mistakenly referred to the V(\(\lambda\)) function as the 'curve showing the colour response of the normal human eye'. Historically, he and many others incorrectly used it to explain some colour phenomena, such as the alexandrite effect. In fact, the sensitivities of the photoreceptors of the eye depend upon the chromatic adaptation under a particular light source.
Figure 8: The normalized spectral sensitivities of the red (R), green (G), and blue (B) cone photoreceptors for human colour vision.

The human eye has three types of cone photoreceptors (red, green and blue) for colour vision (see Figure 8). The sensitivities of the three types of cone photoreceptors depend on adaptation of the eyes to the visual surroundings (Liu, 1996). When the three types of cone photoreceptors receive light from a gemstone, they produce three types of visual signals (R, G, B). These signals are processed through the visual path, and sent to the brain where colour sensations are experienced.

The R, G, and B visual signals can be represented by the CIE tristimulus values X, Y, and Z, which are calculated by the equations

\[ X = \int T(\lambda) S(\lambda) \bar{x}(\lambda) \, d\lambda \]

\[ Y = \int T(\lambda) S(\lambda) \bar{y}(\lambda) \, d\lambda \]

\[ Z = \int T(\lambda) S(\lambda) \bar{z}(\lambda) \, d\lambda \]  (6)

Colour hue change of a gem tourmaline from the Umba Valley, Tanzania
where \( T(\lambda) \) is the spectral transmittance, \( S(\lambda) \) is the relative spectral power distribution of the light source, and \( \bar{x}(\lambda) \), \( \bar{y}(\lambda) \) and \( \bar{z}(\lambda) \) are the CIE colour-matching functions which correspond to the spectral sensitivities of the cone photoreceptors. The visual signals we experience depend on the integrated effects of the spectral power distribution of the light source, the spectral transmittance of the sample, and the spectral sensitivities of the cone photoreceptors. Therefore, colour perception is determined by four factors: chromaticity adaptation, the spectral sensitivities of the cone photoreceptors, the spectral power distribution of the light source, and the spectral transmittance of the material being observed. A colour phenomenon cannot be explained by relying only on one or two of these factors. This is why, using the two spectral transmittance bands in the spectra of certain gemstones, and the change in spectral power distribution of the light sources, fails fully to explain the cause of the alexandrite effect.

Colour change in this tourmaline

One can explain the colour change of this tourmaline with its thickness change by using the three R, G, and B visual signals, or equally, by the CIE tristimulus values. When the thickness of this sample is very thin (for example, 1.0 mm), the calculated tristimulus values are \( X = 33.2 \), \( Y = 37.7 \), and \( Z = 29.7 \). Since \( Y > X \) and \( Y > Z \), the green signal \( Y \) is dominant, therefore, the sample appears green. When the thickness is medium, \( X = 0.15 \), \( Y = 0.15 \), and \( Z = 0.01 \), therefore, \( X = Y \) and \( Z \) can be ignored.

Since the red signal \( X \) and the green signal \( Y \) are equal, the tourmaline appears yellow. When the thickness reaches, for example, 12 mm, \( X = 0.023 \), \( Y = 0.013 \), and \( Z = 0.000 \), we have \( X > Y \), and \( Z = 0 \). The red signal is thus dominant, and the stone appears red.

Using a sample thickness of 8.0 mm and under CIE D65 illuminant, the calculated \( a^* \) and \( b^* \) values are: \( a^* = 0.14 \), and \( b^* = 2.19 \). Its hue-angle is about 86.3 degrees. Therefore, a 8.0 mm thick tourmaline under daylight appears a slightly orangy-yellow. When it is under an incandescent light, the hue-angle is about 44.1 degrees, thus the tourmaline appears an orangy-red (again see Figure 5).

The lightness sensation of the human visual system depends on the spectral luminous efficiency function \( V(\lambda) \) (see Figure 9), which was established for photometry (Wyszecki and Stiles, 1982). This function refers to the relative effectiveness of radiant power to stimulate lightness sensation. The luminous efficiency in the short wavelength region is very low, but with an increase in wavelength, the efficiency increases, reaching a maximum at 555 nm, before decreasing with further increase in wavelength. In the long wavelength region, the efficiency again becomes very low. For example, it takes about 90 times the amount of light at 430 nm to produce the same sense of lightness in the human brain as it takes at 555 nm.

Although the \( V(\lambda) \) function is not related to the colour change phenomenon in the tourmaline, it can explain a change in lightness. With an increase in thickness of this tourmaline, the transmittance decreases, and so does the lightness. The lightness \( L^* \) changes from 100 for 0 mm thickness to 67.77 for 1.0 mm, to 47.24 for 2.0 mm, to 20.66 for 4.0 mm, and to 5.97 for 6.0 mm, and so on (see again Table II). The change of the 540 nm band contributes much more than the long wavelength band in the lightness change when the stone is relatively thin, due to both the higher luminous efficiency and faster decrease of transmittance of the 540 nm band compared to that of the long wavelength band.

Different causes that can produce a colour change

To put the colour-change phenomenon described here into perspective, K. Nassau (pers.comm., 1998) suggests that there are four possible causes of this behaviour in gems and minerals. These four causes can be active one or more at a time, and all four appear to play a role in producing the coloration of the tourmalines discussed here. The four causes are:
Figure 9: The spectral luminous efficiency function $V(\lambda)$, which was established for photometry. This function refers to the relative effectiveness of radiant power to stimulate a sensation of lightness.

(A) Pleochroism, which can be seen in anisotropic materials (referred to as dichroism in a uniaxial material, or trichroism in a biaxial material) where the colour varies either with differences in crystallographic orientation of the material, or with polarization observing in one orientation (such as with a dichroscope).

(B) Alexandrite effect, where a material (in one orientation) changes colour when viewed under different light sources, depending upon the light sources used, the spectrum of the material, and the chromatic adaptation of the human visual system.

(C) Colour zoning, due to spatial differences in chemical composition in the material, or to differences in concentration of a particular chemical element, that are seen along one orientation.

All three of these causes are described in mineralogy and gemmology texts.

(D) Usambara effect, where the material changes colour hue due to increasing path length of light through the sample in one orientation.

Colour hue change of a gem tourmaline from the Umba Valley, Tanzania
It is clear from the data reported by Halvorsen and Jensen (1997) and the results described here that the colours of this tourmaline can be attributed to causes B and D (see again Figure 4). This Usambara type of colour change itself is difficult to recognize, since it is not often possible to compare the colours of two faceted samples of a suitable gem material that vary significantly in thickness.

Conclusion

The Usambara colour-change effect reported in tourmaline from the Umba Valley, Tanzania, is a complex effect involving two types of colour change: one caused by the 'alexandrite effect' within a certain sample thickness range, and another caused by a change in thickness with consequent lengthening of the light path. The hue changes with differences in the tourmaline sample thickness are caused by spectral transmittance changes. Although the hue change of this tourmaline with thickness is very large, this kind of hue change can happen in any coloured material, particularly in dye solutions with a change of colourant concentration. When the thickness of the tourmaline reaches about 10 mm, only a long wavelength band is transmitted; therefore, the tourmaline appears red under any standard light sources. This material shows the alexandrite effect in samples ranging between about 3.5 and 9.9 mm in thickness. The colour change caused by the change in thickness is light-source independent, but the alexandrite effect shown in a certain thickness range depends upon the light sources used. This effect can be quantified with colorimetric calculations, and the results correspond to the visual colour appearances of the tourmaline in different thicknesses and under different light sources.

Acknowledgments

The authors would like to thank Dr Mary Johnson, manager of research and identification of GIA Gem Trade Laboratory, for her helpful discussions and comments and providing the yellow food dye for the colour-change photo. Earlier versions of this article benefited from the comments of Dr Kurt Nassau and other reviewers.

References

CIE, 1986. Colourimetry, Publication CIE No. 15.2, Vienna
Nassau, K., 1997. Letter to the Editor, J. Gemm., 25(7), 491
Nassau, K., 1998. personal communication
Touring the diamond factories of Amsterdam.

A report on the tours and facilities offered by seven diamond-polishing operations in the main metropolitan area of Amsterdam (their locations are indicated on the accompanying map). These cutting factories comprise The Amsterdam Diamond Centre (the primary focus here is the retailing of diamonds to the tourist; cutting demonstrations are not conducted continuously, although the centre is open seven days a week), Coster diamonds (guided tours are available five times a day with explanations in several languages), Cassan diamonds (tours of the showrooms are given by a multi-lingual staff, and cutting demonstrations are sometimes offered), Van Moppes Diamonds (tours of the cutting workshops are available; the historic aspect of polishing equipment and techniques is a speciality), Stoeltie Diamonds (tours are conducted regularly in many languages; although the factory is small and may become crowded at times, private tours can be pre-arranged before or after the regular opening hours), Lazare Diamonds (demonstrations of all cutting equipment in use at the other factories, plus the simulation of the cleaving process which these days is seldom used in practice), Singel Diamonds (a small, more intimate operation suitable for those who dislike large tours; a range of diamond-cutting equipment can be seen and staff are willing to demonstrate it. A selection of diamonds is also on view in the display cases.) Admission is free to all tours, and diamonds are available for sale at most cutting factories as well as at diamond wholesalers which are located mainly on the Rokin (the main street in the centre of Amsterdam) or in the surrounding streets.  

Testing problems at grass roots level. Fancy coloured diamonds.

Review of testing methods for fancy coloured diamonds with special reference to pink stones. M.O'D.

Steine der Erde: Neue permanente mineralogisch-geologisch Ausstellungen im Naturhistorischen Museum Bern.

Diamond crystals and other gem minerals are included in the new display of earth sciences at the Natural History Museum in Bern, Switzerland.  

Gem news.

Recent exploration in Alberta, Canada, has discovered more than 20 kimberlite pipes, many of which contain diamonds. The largest diamond so far weighs 1.31 ct. Anticipated diamond production in the Northwest Territories, Canada, is estimated at 4.2 mct, making Canada the sixth largest diamond producer (by volume) in the world.  

GIA Gem Trade Lab Notes.

A 5.75 ct brownish purple-pink marquise brilliant diamond was found to be a coated diamond, with the speckled surface colour readily visible under the microscope. When assessing the colour of coloured diamonds, it is best to do so from the face-up position. A diamond recently submitted had a face-up colour of fancy yellow brown, but the body colour was orange.  

Treated blue diamond.

The radiation-induced colour of a trillion-cut 3.78 carat greenish-blue diamond was confirmed by the
diamond’s lack of electrical conductivity. The presence of fracture filling was discovered when the stone exhibited the typical purplish ‘flash effect’ while being examined with a loupe.

CVD diamond: a new engineering material for thermal, dielectric and optical applications.

Recent advances in the technology and application of diamond synthesised by chemical vapour deposition (CVD) are presented. The properties of large area CVD diamond plates of different grades are synthesised for a range of different applications. These plates can be made up to 160 mm (6.3 in) across and can have a thickness of 2.0 mm; they can also be grown in hemispherical domes up to 70 mm. The strength seems to be lower than that of a single crystal diamond, but considerably higher than other alternatives. The optical properties are as good as those of a best-quality single crystal type IIa. The values for thermal conductivity are similar to those of a single crystal type IIa.

Gems and Minerals
Mineralien aus dem Westschweizer Jura.

Collectable and perhaps facetable crystals of calcite, celestine are among the minerals found in the Jura area of Western Switzerland.

Gemmologie Aktuell.

Items include garnet cat’s-eye from Sri Lanka, star moonstone from India and blue quartz from Madagascar which owes its colour to lazulite inclusions the material is translucent and can be cut into blue cabochons. The Russians are growing bicoloured quartzes esp. amethyst and citrine coloured stones known as ametrines. Synthetic zincite is also being manufactured, red in colour, with a hardness of 4.5–5. Some quartz-feldspar doublets have been found on the market, as have imitations of malachite-azurite; the latter seem to be ‘reconstructed’, with an SG 3.36 which is lower than the natural material.

Achat, Karneol und Jaspis aus dem Pechstein von Ebersbach in Sachsen.

Ornamental silicas in the form of agate, jasper and carnelian are described from the Ebersbach area of North-West Saxony, Germany, where they occur in volcanic rocks. Moss agate, yellow and amethyst single crystals have also been found.

An Australian synthetic opal.

A 26 x 15 x 5 mm free-form pendant-mounted translucent black opal was found to have a quite distinctive purplish-brown hue. The opal displayed no evidence of either dark potch or inclusions of pink sandstone that usually characterize Lightning Ridge black opal, and further gemmological inspection revealed the columnar colour structure and ‘lizard skin’ surface appearance seen in Gilson man-made opal. Subsequent inquiries indicated the possibility that the opal was manufactured in South Australia, and the author warns of the existence of this very effective look-alike in the Australian market.

Topaz, aquamarine and other beryls from Klein Spitzkoppe, Namibia.

Topaz has been found at Klein Spitzkoppe for over a hundred years, together with beryls and other gem stones. Gem-quality topaz and beryl are found in cavities in the pegmatites that intrude the Klein Spitzkoppe alkali granite, which is Jurassic/Cretaceous in age, or found in alluvium. The major mining is for granite for building purposes while local workers collect the gems. The topaz is typically 0.5 ct to 5 ct, usually colourless (silver topaz) and also pale blue or yellow, but tends to lose its colour if exposed to sunlight. The RI values are relatively low (1.610–1.620), more typically associated with topaz found in rhyolite deposits. The SG values are slightly higher than would be expected and this is thought to be due to a high fluorine content, with a maximum amount of 20.3 wt %. The beryl occurs in various colours and specimens of yellow beryl up to 12 cm long have been recovered.

Mineralsammeln in Kalif ornia.

Benitoite is described and illustrated among the notable California minerals in a general survey of the state’s mineralogy.
Raman investigations on two historical objects from Basel Cathedral: the Reliquary Cross and Dorothy Monstrance.


Two fifteenth-century objects, the Reliquary Cross and the Dorothy Monstrance, were examined by the Swiss Gemmological Institute to identify the gems. This was done using a Raman spectroscopy and an optical microscope. It was surprising to find in such important works of art that many of the stones were imitations composed of glass and doublets. The doublets were made of glass or quartz with the cement layer coloured. Closed back settings made it difficult to identify the pavilion material. Natural stones included amethyst, citrine, colourless quartz, turquoise, peridot, sapphire, red garnet and pink spinel. Inclusions in the spinel and sapphire suggested a Sri Lankan origin with the turquoise and peridot possibly originating from the Near East. Also identified were engraved carnelian and agate and these were thought to be Greek or Roman in age.

M.O'D.

Achat: zur Diskussion über die Genese, die Farben sowie über seltene Achatqualitäten.


The origin, form and structure of the chalcedonies are discussed with notes on fashioning and on notable chalcedony artefacts. Reasons for the coloration of natural material are given and numerous types are illustrated.

E.S.

Elfenbein: Vom Aussehen bis zur Identifizierung.


Throughout the ages, teeth, bones, antlers and horns of animals have been used as jewellery. Ivory is the most valuable of these materials and it is therefore important to identify it correctly. Often in the past this was only possible by destroying the object. The author discusses the range of materials classified as ivory and describes their characteristics: African and Indian elephant teeth, also those from the mammoth (fossil ivory). Sometimes there are malformations caused by faulty growth, those from the mammoth being known as elephant pearls. Then there is ivory from hippos, walrus, whale esp. narwhal. Not known as ivory, the teeth of other animals have also been used, such as bear, stag, wild boar and wart hog. There is also 'vegetable ivory', a substance produced by a South American 'phytelephas' palm. The beak of the helmeted hornbill is another source of non-ivory ivory. Other substances used to imitate ivory include bones, antlers and horns. Physical properties and various possibilities of identification are given.

E.S.

Gems and Minerals
Der Baltische Bernstein.

Describes with black-and-white and coloured photographs some of the characteristic inclusions in Baltic amber. A brief account of amber mining is given. M.O'D.

Amazonite in Sri Lankan topaz.

Using Raman microspectroscopy, a blue-green crystal inclusion 0.5 mm beneath the surface of a 3.88 ct near-colourless rectangular step-cut Sri Lankan topaz was identified as amazonite. This appears to be the first time a blue-green microcline feldspar has been identified in topaz or in any other transparent material. P.G.R.

GIA Gem Trade Lab notes.

A selection of 173 specimens of amber were examined by conventional gemmological methods, and then by Raman spectroscopy. Compared to the conventional methods, Raman spectroscopy is a fast, accurate and non-destructive technique for the routine testing of amber and its imitations. The strong red and yellow fluorescence that is generated in amber when using a laser operating in the visible range is effectively eliminated by using a near-infrared laser. Preliminary results indicate that Raman spectroscopy can be used to differentiate amber from its imitations (including copal resin) and to identify those imitations. P.G.R.
Illustrated descriptive list of composite ornamental materials, also including cultured and Mabe pearls, false cameos, faked gem rough with matrix, coated and filled stones.

M.O'D.

Granate aus der Umgebung von Sao Valéria, Tocantins, Brasilien.


The garnets are found at Fazenda Balisto, in the Municipio Peixi about 12 miles WSW of Sao Valeria, and are of an unusual amethyst colour, RI 1.792 to 1.798, SG 4.08 to 4.11. Small cut stones possess sufficient transparency and may be called rhodolite garnet because of their blue-violet colour.

E.S.

Cat's-eye black opal.


A rare cat's-eye black opal from Lightning Ridge was cut as a semi-translucent brownish-black free-form double cabochon weighing 1.27 ct. What appear under the microscope as 'fibres' (as yet unidentified) which produce the chatoyant effect run at a 40 degree angle to the long axis of the eye. Expert opinion suggests that this is a true cat's-eye phenomenon generated by the internal structure of silica spheres and should not be confused with Brazilian cat's-eye material in which the chatoyant effect is caused by asbestos inclusions.

E.G.R.

Instruments and Techniques

The Hodgkinson method, a.k.a. The Hodgkinson method: Clarifying the record.


In response to an article by Hoover, The Hodgkinson Method, a.k.a. The eye and prism method: some further adaptations’ which appeared in the Australian Gemmologist, 20(1), the author defends his coining of the term the ‘Hodgkinson method’ for what is more commonly known as ‘Visual optics’. He reasons that this non-instrumental confirmation of the identity of a gem was not simply a rediscovery of a method first proposed by Crowningshields and Ellison as claimed by Hoover, but is the result of Hodgkinson’s personal experimental observations and the assimilation of well-known observable phenomena. Hanneman’s article is preceded by a letter to the editor on the same subject and followed by a ‘reply’ from Hoover. The arguments put forward by Hanneman and Hoover in their respective letters and articles on this subject appear to be both philosophical and gemmological. The philosophical argument is about whether Hodgkinson is the originator of the method and should have his name associated with it as proposed by Hanneman. The gemmological argument revolves around the question of Hodgkinson’s ‘Visual optics’ being a tool of confirmative gemmology as claimed by Hanneman, or a tool of determinative gemmology as inferred by Hoover, whose suggested additions to the method simply reinforce this determinative aspect.

P.G.R.

Synthetics and Simulants

The ‘Biron’ synthetic emerald. An update.


Describes the Biron hydrothermally-grown emerald with notes on means of identification. Inclusion-free material will need chemical analysis or IR Spectroscopy for certain determination.

M.O'D.

Gem news.


A jadeite boulder appeared complete with its alteration crust and a few polished windows, but when sawn it was found that the windows were thin slices of better coloured green jadeite that had been placed in a fabricated crust. Topaz of pink, orange and red colours had been treated by a sputter-coating process, but the coating was found not to be permanent and was easily scratched. Bluish topaz had been coated with a cobalt-rich material, which could only be scratched with a point of hardness 8 on Mohs’ scale.

J.J.

Review of synthetic rubies over the years.


Review of the growth and determination of the main types of synthetic ruby manufactured during the present century.

M.O'D.

GIA Gem Trade Lab notes.


Nine loose undrilled pearls, together with some beads used in their culturing, were submitted for identification. The beads were dolomite and had been fashioned in South Korea and the pearls had been cultured in Japan. A strand of fairly large black pearls, with a metallic appearance, were found to be cultured pearls that had been dyed, possibly with silver nitrate solution. Six triangular brilliants were thought to be natural green obsidian from Tunduru, Tanzania, but with the aid of FTIR spectroscopy the stones were found to be manufactured glass. A purple cabochon thought to be sugilite, was a dyed quartz aggregate with the colour concentrated around and between the aggregate grains.

J.J.

Specious or precious.


Review of hydrothermal and natural emeralds and the means of distinguishing between them.

M.O'D.
BOOK REVIEWS


These two sumptuously produced volumes, with text and photographs printed on substantial, silk-surfaced paper, record the results of research into the history of the English Coronation and the associated regalia in greater detail than has ever before been possible.

Volume I is concerned entirely with the origins and history of the Coronation ceremony, but it is in Volume II that detailed examination of the Crown Jewels is documented, revealing many discoveries and new insights about the history of the gemstones. Each item has been newly photographed and the team of three gemmologists have taken the opportunity to examine the jewels with sophisticated gemmological techniques. This review will be concerned therefore only with volume II (although the complete set was loaned for the purpose of review).

The catalogue illustrates and describes the regalia, not only the numerous crowns, orbs and sceptres, but also the various swords, plate and textiles. Each chapter begins with a brief ‘abstract’ giving the size and general appearance of the item, before a general description of the history of the various formats and vicissitudes (as when the plan by the adventurer Thomas Blood in 1671 to steal the Crown Jewels was frustrated, but not before he had battered the arches of the crown with a mallet the better to be concealed beneath his cloak: repair to Crown and Orb £145). The description of each major item is concluded with a ‘Gemmological commentary’, and it is here that we get a listing of the size and weight of all the major gemstones, including details of their surface imperfections, chips, minor scratches and any visible inclusions.

The Imperial State Crown in brief has 2668 diamonds, 17 sapphires, 11 emeralds and 269 pearls, but interest lies mainly in its larger individual gemstones. The so-called Black Prince’s Ruby may have been in the Crown Jewels since around 1367 and for many centuries was described more correctly as a balas ruby. It is actually a large polished crystal (~ 170 ct) of red spinel with three vestigial octahedral faces and was pierced in the Middle Ages for polishing crystal (~ 170 ct) of red spinel with three vestigial octahedral faces and was pierced in the Middle Ages for polishing.

The Cullinan was handed over to the firm of Asscher in Amsterdam for cutting and was successfully cleaved into two main pieces weighing 2029.9 and 1068.1 ct. We learn that, contrary to popular legend, the clever Joseph Asscher did not faint afterwards; he is reported to have said later that ‘No Asscher would faint over an operation on a diamond. He’s much more likely to open a bottle of champagne.’ The faceting and polishing of the gems cut from the rough Cullinan took three polishers, working 14 hours a day, eight months to complete. There are many other gems in the Sceptre (332 diamonds, 31 rubies, 15 emeralds, 7 sapphires, 6 spinels and an amethyst); the positions of all of these are indicated and it is remarked that although most of the rubies are of a fine purplish-red colour they are accompanied by two spinels in positions where rubies might be expected, and that some or all of the spinels may have been used in the belief that they were rubies. The amethyst ‘sphere’ (~ 32.8 mm diameter) is composed of two joined hemispheres to form part of the ‘monde’ at the head of the sceptre; pleochroism is noticeable.

The Cullinan I diamond (530.20 ct), formerly known as the Star of Africa I, is a pear-shaped brilliant mounted in the head of the Sceptre with Cross, and is the largest cut colourless diamond in the world; it weighs 530.20 ct when free from its setting. The rough Cullinan diamond (3025 ct) discovered in the Premier mine, South Africa, was purchased by the Transvaal Government and presented to the reigning monarch, King Edward VII (the package was escorted on board ship to England by armed guards; this, however, was a dummy operation, the diamond being sent by ordinary mail. Both packages arrived safely). The Cullinan was handed over to the firm of Asscher in Amsterdam for cutting and was successfully cleaved into two main pieces weighing 2029.9 and 1068.1 ct. We learn that, contrary to popular legend, the clever Joseph Asscher did not faint afterwards; he is reported to have said later that ‘No Asscher would faint over an operation on a diamond. He’s much more likely to open a bottle of champagne.’ The faceting and polishing of the gems cut from the rough Cullinan took three polishers, working 14 hours a day, eight months to complete. There are many other gems in the Sceptre (332 diamonds, 31 rubies, 15 emeralds, 7 sapphires, 6 spinels and an amethyst); the positions of all of these are indicated and it is remarked that although most of the rubies are of a fine purplish-red colour they are accompanied by two spinels in positions where rubies might be expected, and that some or all of the spinels may have been used in the belief that they were rubies. The amethyst ‘sphere’ (~ 32.8 mm diameter) is composed of two joined hemispheres to form part of the ‘monde’ at the head of the sceptre; pleochroism is noticeable.

The Crown of Queen Elizabeth the Queen Mother contains some 2800, mainly cushion-shaped, diamonds, but the main feature is the Koh-i-nûr (Mountain of Light) cushion-shaped brilliant. When this stone (186 ct) was ceded to Queen Victoria following the annexation of the Punjab in 1849, its Indian cut was considered to be poor, and it was recut in 1852 to 105.6 ct. It is classified as a type II diamond, and though by modern standards the cut is far from perfect in that the large culet is parallel with the
table facet giving the impression of a black hole in the centre of the stone; it is nevertheless described as still being full of 'life'.

There are many other crowns and parts of the regalia described in detail in this outstanding work. Mention must be made of the Sovereign's Orb, for example, which is in gold, set with jewels in enamel settings. In the meticulous detail recorded in the gemmological commentary we learn that the jewels comprise of 365 diamonds, 9 emeralds, 9 sapphires, 13 rubies, one amethyst and one glass! Two or three centuries ago, it was common to hire diamonds and other jewels for use in Coronation ceremonies. Thus, at the Coronation of George II in 1727, diamonds valued at £12,000 were hired for £480 and set in St Edward's Crown and three sceptres. Nowadays the opposite situation applies: the Stuart sapphire originally on the front band of the Imperial State Crown was moved to the back in 1909 to accommodate the Cullinan II diamond in its place, and the 'spare' sapphire previously at the back is now free from the regalia and is displayed in the Martin Tower, Tower of London.

One of the many delights of this work lies in the numerous colour photographs of the regalia, many of the close-up views of the individual stones having been produced by the team of gemmologists, including Alan Jobbins, Ken Scarratt and Roger Harding, and also Frank Greenaway, the photographer from the Natural History Museum. The price of these two magnificent volumes may prevent one from rushing out to buy a set, but this work records for posterity far more details of the gemstones in the regalia than have hitherto been available. We should each try to ensure that it is available for consultation in a nearby university or regional library.  

Jewellery – English/Chinese, Chinese/English dictionary.  

Amazingly useful and comprehensive dictionary found especially useful by this reviewer who (a long time ago) studied the language. Some entries are unexpected but most of those you really want appear to be there.  

I gemmologi del mondo raccontano le gemme dal mare Gemmologia Europa VI  

A welcome addition to the literature of maritime ornamental products, this new biennial volume contains papers on pearls and corals from Asia (K. Scarratt), pearls and corals from Australia (G. Brown), gems from African waters (H. Pienaar), formation and composition of gems from the sea-pearls from American waters (C. Hedegaard), gems from British waters (R.R. Harding), gems from French waters (J.P. Poirot), gems from Italian waters (M. Superchi), gems from Italian waters – magic and preciousness in coral manufacturers (C. Ascione), sapphires from Andranondambo, Malagasy (E. Gübelin). Papers are presented in both Italian and English and bibliographies relating to each paper are placed together at the end of the book. There is a good provision of maps and useful short biographies of the authors. The standard of the papers is very high and continues this authoritative and impressive series.

Pearl buying guide. [Third edition]  

At the end of the main text of this most attractive book are quizzes arranged in order of the chapters to which they refer. A quick glance through the questions convinced me that while I knew that most black pearls were not very round, that most black pearls were in fact a dark shade of grey and that ‘AAA’ quality as applied to pearls has no particular significance, every seller being able to apply any designation desired, most of the remainder of the questions required immediate recourse to the text. This shows how much the book is needed! This third edition is even better produced than its two predecessors and the text is arranged in a now familiar order, with an introduction showing just why pearls are desirable. Though not really an organic ornamental materials student, this is the book I shall consult on any pearl topic whatsoever.

Saltbush rainbow: the early days at White Cliffs.  

In a re-issue with additional photographs of a book first published in 1983, the story of the White Cliffs opal fields of New South Wales is entertainingly told with a wealth of maps and anecdotes. Opal from the area is recorded from at least 1884 though it is not known who made the first discoveries. As well as mining stories, details of community development are recounted, the whole picture being typical of 19th century Australian mining areas. There is a useful bibliography: readers interested in opal history should be keeping a look-out for books such as this as they may have short print-runs.

Emeralds around the world.  

Well-compiled survey of the world’s major emerald deposits with illustrations depicting all kinds of mining scenes as well as examples of cut and rough emeralds from the sources described. A good deal of the information has not appeared in monograph form before. The author promises books on diamonds and ruby.
OBITUARY

An appreciation of Miss ’Lena’ Willis
by David Callaghan

The death of Miss ‘Lena’ Willis at the age of 99 is the final chapter in the life of a remarkable lady, one who was unique, and one with whom I had the privilege of working for 15 years. From the moment I joined Hancocks in London’s West End in 1955, as one of the NAG apprentices, she took me under her wing and gave me the opportunity to learn from her any and all aspects of the jewellery trade, a trade which had become her life.

Miss ‘Lena’ Willis, taken in 1960 by Vivienne.

Born on 7 December 1899, ’Lena’, as she was known to most people, was the eldest daughter in a family of six, having three brothers and two sisters. The family lived in Leigh-on-Sea, Essex, and she lived in that area all her life. Her father held the view that she, as the eldest daughter, should not go out to work but stay and help run the home. She defied her father by going to work as a secretary. Her first job was at a local timber merchant but she found it ‘lonely, surrounded by nothing but planks of wood’. She left that job and went to work as secretary to ‘Jimmy’ Wixley, a local jeweller, and here she really found her niche in life. Mr Wixley was an entrepreneur, a dealer in gems and almost any object sold by the retail jeweller in a county town. He had a love for gem opal and this he passed on to Miss Willis. She really took to the trade and Mr Wixley soon recognized her interest and encouraged her to train further. The Gemmological Diploma of the NAG – to become the FGA in 1931 – was still in its infancy and she had to take the course by correspondence. She qualified in 1930, only the tenth woman to do so. She soon became indispensable to Mr Wixley and when he opened another shop in Westcliff-on-Sea she was appointed manager.

In the 1930s, Hancocks, in common with many small firms, was finding the going very tough and by 1935 was in some difficulty. The company needed a fresh impetus and Mr Wixley was introduced to the then two partners, and so began his 25 years of service until his death in 1959 at the age of 82. At the beginning of World War II his Westcliff-on-Sea business was closed down and the stock transferred to Wigan and Miss Willis went with him to work there. This was not to last long and Mr Wixley returned to Hancocks during the war service of the other partners. Miss Willis joined the Ministry of Supply and her task was to supervise the collection of iron railings and other
such metal objects from all over East Anglia and the Home Counties during the Government’s drive for scrap metal. She began this work in 1941 but in 1942 she answered a carefully worded advertisement in The Times. This led to a successful interview on 27 August 1944 with a Lt. Col. O’Hea. He was based in Denham, at Sir Oswald Mosley’s home that had been requisitioned at the beginning of the war. Miss Willis transferred there under the direct written order of the Prime Minister, Winston Churchill. It was known as War Station 14 and was, in fact, an arm of MI6. She worked there for the rest of the war.

In 1945 she returned to Hancocks to work alongside her ‘old chief’ Mr Wixley, and in 1950 she was appointed a Director. Thus she was unique in the history of the firm – the first woman to be appointed a Director and no other woman in the West End jewellery trade had ever reached such a level of responsibility. Why was this so unusual?

The jewellery trade was male dominated and, of all firms in the West End, Hancocks was amongst the most male chauvinistic. Such was the male dominance in the trade that even her own name became masculinized (if there is such a word!). When she first worked for Mr Wixley she would have been referred to as Miss Willis. However, as time progressed and she became indispensable to him, it became appropriate to recognize this. It was not the done thing in those days to refer to someone by their first name, so she became known as ‘William’. In turn this was shortened to ‘Bill’. This made her an equal, of course, as she now had a man’s name! I had always thought it perverse that such a ladylike person should have to suffer this indignity, but recently I realized she took it as a compliment, albeit a very backhanded one!

What was she like as a person? Diminutive in stature, as well as in nickname, ‘Lena’ Willis was attractive, very ladylike in her manner and dress, generous in every sense of the word, and a sound businesswoman. She was a very fine judge of colour in a gemstone, and had a love of the two ‘miracles’ of the gem world – pearls and opals. She was a wonderful teacher, and very interested in and encouraging to the young. Without her, Hancocks would not have been the force in the jewellery trade that they became after World War II, and I was the the main beneficiary of her time and knowledge. She gave me every opportunity to stand on my own feet and I felt always that I was working with her and not for her. She retired in 1970 when she had no reason to, other than to give the opportunity she felt confident I could use. In the portrait taken in 1960 by Vivienne she is shown wearing both pearls and opals. The photograph is not one that flatters her, it shows her as she was and how she appeared every day in business. She is wearing a cultured pearl necklace of carefully graded and matched pearls. The brooch is a basket of flowers and was her favourite. She designed it herself, and the ‘basket’ is a single piece of precious black opal. The flowers comprised many small pieces of very bright opal, ruby, sapphire, pearl and turquoise – all carefully blended to give a realistic picture.

You will realize that she was retired for very nearly 30 years, during which time she kept herself very active. However, a younger sister with whom she shared a house became very ill. Lena nursed her daily for nearly four years until her death. This took a toll on her own health and she suffered a stroke at the age of 94. This affected her mobility but she recovered well and lived very happily in a rest home for her remaining years. It was only in the last 12 months that her health failed her.

There are now very few people left in the London trade who worked with her either as a buyer or supplier, but her name lives on in those of us lucky enough to have known her. Her love of gemstones and of the trade she passed on to me. Now in my own retirement I look back over 42 very happy and fulfilling years in the trade. My life has been enriched by the generosity, enthusiasm and grace of a unique lady, and I am very fortunate to have worked alongside her.

***

Mr. R.K. Bennett, FGA, DGA (D.1978), Winchcombe, died in August 1998.
Mr Matthew S. Potter (D.1980), San Jose, Calif., U.S.A., died on 13 November 1998.
Mr Robert A. Pudner (D.1963), Childwall, Liverpool, died suddenly on 5 March 1999.
Mr Samuel F. Redknap (D.1947 with Distinction), Twickenham, Middlesex, died in January 1999.

NEWS OF FELLOWS

Congratulations to Dr Roger M. Key, FGA, Keyworth, Nottinghamshire, who was awarded an MBE in the 1999 New Year's Honours list. The award was made in connection with his work for the Botswana Geological Survey.

MEMBERS' MEETINGS

London

On 13 January 1999 at the Gem Tutorial Centre, 27 Greville Street, London EC1N 8TN, Andrew Ross, Curator of Fossil Arthropods in the
GIFTS TO THE ASSOCIATION

The Association is most grateful to the following for their gifts for research and teaching purposes:

The Bahrain Promotions and Marketing Board for a copy of the book *Treasures of Bahrain*.

Richard Burton for an 11.93 ct aquamarine.

Luella Woods Dykhuis, FGA, DGA, Tucson, Arizona, U.S.A., for various specimens including agate, coral, ruby in sillimanite, horn and shell, and *The Gem Kingdom* by Paul E. Desautels and *Brazil, Paradise of Gems* by Jules Roger Sauer.

Eddie S.K. Fan of Chui Wah Jewellers, Kowloon, Hong Kong, for two pieces of dyed jadeite.


Sonja Glaser, FGA, Galle, Sri Lanka, for samples of blue apatite, sapphire, spinel and garnet.

Alfred H. Gunn, Dover, Kent, for a set of brass scales.

Janice Kalischer, Finchley, London, for a plastic imitation cameo set in a brooch.

Li Liping, FGA, DGA, China University of Geosciences, Wuhan, P.R. China, for a carved bone flower.

Mrs C.M.Ou Yang, Hong Kong Institute of Gemmology, for a boxed collection of jadeite containing 15 pieces.

Philip Seager, FGA, Didcot, Oxfordshire, for a quantity of back issues of *The Journal of Gemmology*.

E.A. Thomson (Gems) Ltd., London, for 21 garnets, and five packets containing blue and green glass.

Professor Yan Weixuan, FGA, DGA, China University of Geosciences, Wuhan, P.R. China, for a bowenite carving, a row of non-nucleated freshwater pearls, and a corozo nut and carving.

Linda Zhou, Tongji University, Shanghai, P.R. China, for a ‘Duschan jade’ bangle.

Department of Palaeontology at the Natural History Museum, South Kensington, gave an illustrated lecture on insects in amber.

On 11 March 1999 at the Gem Tutorial Centre, Dr H. Judith Milledge, Emeritus Reader in Crystallography at UCL, gave a lecture entitled *Some current problems in diamond research*.

Midlands Branch

On 29 January 1999 at the Earth Sciences Building, University of Birmingham, Edgbaston, a Bring and Buy evening was held, followed by a quiz.

On 26 February 1999 at the Earth Sciences Building, David Callaghan gave a lecture entitled *Cameos and gemstone carvings*.

On 26 March 1999 at the Earth Sciences Building, James Gosling gave a talk on the fascinating world of miniatures and the beautiful jewelled settings used for their display.

North West Branch

On 17 March 1999 at Church House, Hanover Street, Liverpool 1, Keith Mason gave a lecture entitled *Exotic diamonds*.

Scottish Branch

A Members’ Night and Bring and Buy were held on 20 January 1999 at the British Geological Survey, Murchison House, West Mains Road, Edinburgh. A series of short talks was given by members, including one by Alan Hodgkinson on how to identify synthetic moissanite in a parcel of diamonds.

On 17 March 1999 Dr Jeff Harris gave a talk entitled *Diamonds from the crust to the core*.
FORTHCOMING EVENTS

30 April Midlands Branch. ID challenge and AGM
30 April Scottish Branch. Annual Conference and AGM. Guest speaker Dr W.W. Hanneman
to 2 May
6 May London. A guide to affordable gemmology. Dr W.Wm. Hanneman
14 May London. Shining examples – the teaching potential of a gemmologist’s jewel box. Cecilia Pople
19 May North West. Pearls – romance and fact. Rosamond Clayton
26 June Midlands Branch. Summer supper
28 June London. Annual General Meeting, Reunion of Members and Bring and Buy Sale
14 July London. Demantoid garnet and other new gems and minerals from Namibia. Professor Peter R. Simpson
15 September North West Branch. Photographing gems and their inclusions. John Harris
20 October North West Branch. Window to beauty. Piero Di Bela
31 October Annual Conference – New Developments in the Gem World. Keynote speaker: James Shigley, Director of Research at the GIA, Carlsbad. To be held at the Barbican Centre, London
17 November North West Branch. Annual General Meeting

For further information on the above events contact:
London: Mary Burland on 0171 404 3334
Midlands Branch: Gwyn Green on 0121 445 5359
North West Branch: Deanna Brady on 0151 648 4266
Scottish Branch: Catriona McInnes on 0131 667 2199

GAGTL WEB SITE
For up-to-the-minute information on GAGTL events visit our web site on www.gagtl.ac.uk/gagtl

GEM DIAMOND EXAMINATIONS
In January 1999, 55 candidates sat the Gem Diamond Examination, 40 of whom qualified, including three with Distinction. The names of the successful candidates are listed below:

Qualified with Distinction
Chen Chuyiao, Beijing, P.R. China
Chik Wing Sheung, Kowloon, Hong Kong
Zhang Ning, Wuhan, Hubei, P.R. China

Qualified
Ashby-Crane, Robert J., Bratton Fleming, Barnstaple, Devon
Briginshaw, Richard C., Hampstead, London
Cheung Shiu Cheong, Randy, Kowloon, Hong Kong
Deng Xiuquan, Beijing, P.R. China
Dennis, Roger A., Elstree, Hertfordshire
Doucet, Francois L.G., Brockley, London
Dykhuis, Luella Woods, Tucson, Ariz., U.S.A.
Fan Hidy Kit-Ha, Kowloon, Hong Kong
Galdeano, Nerea L., London
Han Xu, Beijing, P.R. China
Hu Yunhua, Beijing, P.R. China
Hunter, Pauline A., Caversfield, Oxfordshire
Kendall, David, Addiscombe, Surrey
Mak Kin Yeung, Kenny, Hong Kong
Konda, Muana Mputu, London
Lee, Martin, South Croydon, Surrey
Li Ki Wing, Alison, Kowloon, Hong Kong
Li Wei, Beijing, P.R. China
EXAMINATIONS IN GEMMOLOGY

In the Examinations in Gemmology held worldwide in January 1999, 129 candidates sat the Preliminary Examination of whom 95 qualified. In the Diploma Examination 130 candidates sat of whom 67 qualified.

Diploma

Qualified

Aho, Jouko, Oulu, Finland
Amarasinghe, Ashan S., Rajagiriya, Sri Lanka
Arentsen, Ernst W., Wapse, The Netherlands
Bagri, Abhishek K., Mumbai, India
Bai Chenguang, Guilin, Guangxi, P.R. China
Blampied, Julie K., Trinity, Jersey
Blatherwick, Clare, Hampstead, London
Brown, Vanessa, Sittingbourne, Kent
Chan So Ying, Hong Kong
Chang Kung Jung, Taipei, Taiwan, R.O. China
Chen Shu-Chuan, Taipei, Taiwan, R.O. China
Choi Sun Young Chun, Seoul, Korea
Curran, Rose, Ealing, London
Deljanin, Branko, New York City, New York, U.S.A.
Ding He, Guilin, Guangxi, P.R. China
Edery, Gabrielle J., London
Elen, Shane, Oceanside, Calif., U.S.A.
Finlay, Louden B., London
Garrett, Frances, Sutton, Surrey
Gong Dong, Wuhan, P.R. China
Grech, Carrieann, London
Greenfield, Dawn M., Eynsford, Kent
Grostate, Stephen E., Ashtead, Surrey
Ho Cheuk Fung, Kowloon, Hong Kong
Hsu Feng, Taipei, Taiwan, R.O. China
Hunter, Pauline A., Caversfield, Oxfordshire
Ip Kit King, Kowloon, Hong Kong
Ji Yan, Shanghai, P.R. China
Keating, Elaine, Hackney, London
Kilian, Angela M.C., Leidschendam, The Netherlands
Koh Hock Heng, Singapore
Kwon Sung Hae Yoon, Yangon, Myanmar
Lei Wei Hong, Singapore
Li Rutian, Guilin, Guangxi, P.R. China
Lin Ling, Guilin, Guangxi, P.R. China
Lixia Xu, Wuhan, Hubei, P.R. China
Lu Ning, Shanghai, P.R. China
Mafara, Ezekiel M., Harare, Zimbabwe
Mingjun Qiu, Wuhan, Hubei, P.R. China
Mossuto Mori, Maria E., Yangon, Myanmar
Muller, Hellen A.D., Wierden, The Netherlands
Oshida, Reiko, Singapore
Owen, Charryn P., Northwich, Cheshire
Panagiotou, Panagiotis, Corfu, Greece
Pang Chi Keung, Maurice, Shatin, Hong Kong
Park Sang Rok, Sangju-Gun, R.O. Korea
Pavlou, Marios G., Megaro Chianteclair, Nicosia
Ping Su, Wuhan, Hubei, P.R. China
Qiu Jian, Guilin, Guangxi, P.R. China
Rambukkange, Timothy P., Kandy, Sri Lanka
Rusch, Louise V., Hatfield, Hertfordshire
Schmocker, Karin, Neuchatel, Switzerland
Sethi, Bari, London
Shuqiang Feng, Wuhan, Hubei, P.R. China
Siyu Cheng, Wuhan, Hubei, P.R. China
Su Cho Win, Yangon, Myanmar
Swe Zin Aye, Yangon, Myanmar
Tanaka, Rika, Yangon, Myanmar
Tang Suk Yee, Shawn, Hong Kong
Townsend, Rachel E., Kingsland near Leominster, Herefordshire
Tulo, Karen, Ludwigshafen, Germany
Walker, Zoë, Pelsall, Walsall, West Midlands
Xin Lu, Wuhan, Hubei, P.R. China
Yanhan Zou, Wuhan, Hubei, P.R. China
Yuling Li, Wuhan, Hubei, P.R. China
Zhou Wen Hao, Guilin, Guangxi, P.R. China

Preliminary

Qualified

Ancemot, Alexandre, Tooting, London
Andries, Stephanie S., Kensington, London
Antenen, Didier R., Lausanne, Switzerland
Arbon, Kathryn J., Wimborne, Dorset
Arrowsmith, Jodie, Oxhey, Hertfordshire
Bagri, Abhishek I., Mumbai, India
Beekhuis, Alexander R., Oegstgeest, The Netherlands
Bell-Burrow, Briony, London
Berry, Shoshana, Salisbury, Wiltshire
Bolissian, Ingo S., Bow, London
Brohi, Nosheen, Wanstead, London
Chak, Anny K.Y., Central, Hong Kong
Chambers, Sara L., Cardiff
Chan So Ying, Hong Kong
Chambers, Sara L., Cardiff
Chen San-San, Taipei, Taiwan, R.O. China
Chen Wei Li, Taipei, Taiwan, R.O. China
Chih Cheng-L, Taipei, Taiwan, R.O. China
Chiu Hsiao Hui, Taichung, Taiwan, R.O. China
Chiu Mei-Hsiu, Taipei, Taiwan, R.O. China
Croucher, Nicola, London
Davies, Joanne, Glasgow
de Kat, Keavenny A.L., The Hague, The Netherlands
Deehan, Thomas, Carshalton, Surrey
Dickson, Rebecca B., London
Dorner, Sandrine, London
Dykstra, Eveline C., Haren, The Netherlands
Flynn, Matthew, Amersham, Buckinghamshire
Geung Wan Yin, Hong Kong
Han Su Thin, Yangon, Myanmar
Hardiman, Julie C., Eastleigh, Hampshire
Hassan, Fatima C., Totteridge, London
Henn, Ingo, London
Higgins, Christine S., Hong Kong
Hsu Feng, Taipei, Taiwan, R.O. China
Hsu Ching-Yi, Taipei, Taiwan, R.O. China
Hsu Miao Chu, Taipei, Taiwan, R.O. China
Hsu Hui Ming, Taipei, Taiwan, R.O. China
Huddleston, James P., Hounslow, West London
Hurst, Jane S., Salisbury, Wiltshire
Johnson, Janet M., Friern Barnet, London
Johnson, James P., Friern Barnet, London
Joyner, Louise, London
Kamil, Mohammed Ruzwain, Harrow Weald, Middlesex
Katada, Mitsura, Oxhey, Hertfordshire
Koers, Jessica, Amsterdam, The Netherlands
Kulukundis, John C.A., London
Kwok Chiu Kwan, Betty, North Point, Hong Kong
Kwon Soo Youn, Taegu, Korea
Lain Yu Wen, Taichung, Taiwan, R.O. China
Lee, Martin, South Croydon, Surrey
Lin Chung Jung, Taipei, Taiwan, R.O. China
Lin Wanjia, Guilin, Guangxi, P.R. China
Lin Xiaozen, Guilin, Guangxi, P.R. China
Liu Kun Ming, Taipei, Taiwan, R.O. China
Liu Hsin Yen, Taipei, Taiwan, R.O. China
Liu Jie Wen, Guilin, Guangxi, P.R. China
Luk Yee Lin, Ellen, Hong Kong
Manci, Nino F., Congleton, Cheshire
Morton, Aude A., London
Murase, Yuka, Croydon, Surrey
Park, Sang Rok, Sangju-Gun, R.O. Korea
Paszko, Pauline, London
Perez Dorao, Carlos, Golders Green, London
Qin Bin, Guilin, Guangxi, P.R. China
Reich, Mary B., Albuquerque, New Mexico, U.S.A.
Saminpanya, Seriwan, Manchester
Schools, Wanda, Schagk, The Netherlands
Schonberg, Eva A., London
Schooling, Clare, London
Shan, Gopi, Hackney, London
Smith, Lorna M. E., Elderslie, Renfrewshire
Tai Wai Yee, Hong Kong
Telfer, Corin, Rickmansworth, Hertfordshire
Thu, Kyaw, Yangon, Myanmar
To Kwan, Hong Kong
Wang Dong Mei, Shanghai, P.R. China
Wang Yan-Ping, Shanghai, P.R. China
Waterfall, Mary C., Ely, Cambridgeshire
Welsh, Fiona, Wynyard Village, Cleveland
Wheeler, Nicholas, Sudbury, Suffolk
Wu Sung Mao, Taipei, Taiwan, R.O. China
Xanthoudaki, Aristea D., Chania, Crete, Greece
Yam Yau Shun, Kowloon, Hong Kong
Yin Wei, Shanghai, P.R. China
Yang Hui Ning, Taipei, Taiwan, R.O. China
Yau Siu Wai, Kowloon, Hong Kong
Yeo See Yee, Clara, Singapore
Yorke, Anabel S., London
Young, Margaret R., Bearsden, Glasgow
Yuka, Fujiwara, London
Zhou Weiqi, Guangzhou, P.R. China
Zhu Jian Qing, Shanghai, P.R. China
Zhuang Yilin, Guangzhou, P.R. China
Zimmermann, Bettina E., Basel, Switzerland
MEETINGS OF THE COUNCIL OF MANAGEMENT

At a meeting of the Council of Management held at 27 Greville Street, London EC1N 8TN, on 26 January 1999, the business transacted included the election of the following:

Fellowship (FGA)

Devon, Jill, Coggeshall, Essex. 1994
Li Xianshu, Tianjin City, P.R. China. 1998
Marr, Peter, Torquay, Devon. 1996
Pfneisl, Thomas, Vienna, Austria, 1986
Richardson, Julia H., London. 1998
Wei Qiong, Wuhan, Hubei, P.R. China. 1998
### Ordinary Membership

Atichati, Wilawan, Bangkok, Thailand  
Dower, Daniel G., London  
Endo, Chihiro, Kyoto City, Kyoto, Japan  
Fearnley, Christopher S., Didsbury, Manchester  
Fujita, Takashi, Osaka City, Osaka, Japan  
Furuta, Atsuko, Kurume-City, Fukuoka Pref., Japan  
Halperin, David M., London  
Hashimoto, Megumi, Kyoto City, Japan  
Hirano, Kiyomi, Kawanishi City, Hyogo Pref., Japan  
Kalha, Mahmoud A.M., Linstock, Carlisle  
Kataoka, Satomi, Osaka City, Osaka, Japan  
Kato, Ayumi, Osaka City, Osaka, Japan  
Keat, Ian, London  
Kumagai, Hiromi, Sendai City, Miyagi Pref., Japan  
Kuroda, Makiko, Hirakata City, Osaka, Japan  
Leverington, Michael, Bexhill on Sea, East Sussex  
Matsubara, Midori, Osaka City, Osaka, Japan  
Modarres, Pary, Carshalton, Surrey  
Morris, Charlene, Duluth, GA, USA  
Murai, Shinobu, Osaka, Japan  
Rance, Felicity Anne, Windlesham, Surrey  
Sakajo, Hiroko, Yao City, Osaka, Japan  
Saminpanya, Seriwat, Manchester  
Tachibana, Yuri, Chofu City, Tokyo, Japan  
Takahashi, Chika, Tokyo, Japan  
Tanaka, Yoshi, Kuruma City, Niigata Pref., Japan  
Tanaka, Hiroko, Yoshida City, Nara Pref., Japan  
Takihata, Tadashi, Nara City, Nara Pref., Japan  
Ueno, Tatsushi, Ikoma City, Nara Pref., Japan  
Yamanaka, Norio, Takaichi-gun, Nara Pref., Japan  
Yamasaki, Yashunori, Akashi City, Hyogo Pref., Japan

### Laboratory Membership

Burns the Jewellers, Manchester

At a meeting of the Council of Management held at 27 Greville Street, London ECIN 8TN, on 24 March 1999, the business transacted included the election of the following:

**Fellowship and Diamond Membership (FGA DGA)**

Owen, Charryn P., Northwich, Cheshire. 1998/1999

**Fellowship (FGA)**

Ajani, Shilpa Chetan, Bombay, India. 1985  
Grostate, Stephen E., Ashstead, Surrey. 1999  
Rusch, Louise V., Hatfield, Hertfordshire. 1999  
Silverman, Sivan, Waltham, Mass, U.S.A. 1987  
Walker, Zoë, Pelsall, Walsall, West Midlands. 1999

**Diamond Membership (DGA)**

Doucet, Francois L.G., Brockley, London. 1999  
Konda, Muana Mputu, London. 1999  
Osband, Peter M., London. 1999

### Ordinary Membership

Botha, Jacob M.G., Birr, Co. Offaly, Ireland  
Chambers, Sara L., Cardiff  
Hardiman, Julie C., Chandles Ford, Hampshire  
Lee, Helen, London  
Smith, Mark H., Bangkok, Thailand  
Woolland, Natalie, Seaton, Devon

### TRANSFERS

Ordinary Membership to Fellowship and Diamond Membership (FGA DGA)

Hunter, Pauline A., Caversfield, Oxfordshire. 1999  
Sethi, Barti, London. 1999

---

J. Gemm., 1999, 26, 6, 404-411
Fellowship to Fellowship and Diamond Membership (FGA DGA)
Briginshaw, Richard C., Hampstead, London. 1999
Li Ki Wing, Alison, Kowloon, Hong Kong. 1999
Oldershaw, Cally J.E., Leavesden Green, Hertfordshire. 1999
Patel, Nita, Newbury, Berkshire. 1999
Warshow, Nancy, Nairobi, Kenya. 1999

Diamond Membership to Fellowship and Diamond Membership (FGA DGA)
Keating, Elaine, Hackney, London. 1999

Ordinary Membership to Fellowship (FGA)
Blatherwick, Clare, Hampstead, London. 1999
Brown, Vanessa, Sittingbourne, Kent. 1999
Choi Sun Young Chun, Seoul, Korea. 1999
Curran, Rose, Ealing, London. 1999
Finlay, Louden B., London. 1999
Greenfield, Dawn M., Eynsford, Kent. 1999

Kilian, Angela M.C., Leidschendam, The Netherlands. 1999
Mossuto Mori, Maria E., Yangon, Myanmar. 1999
Muller, Hellen A.D., Wierden, The Netherlands. 1999
Tulo, Karen, Ludwigshafen, Germany. 1999

Ordinary Membership to Diamond Membership (DGA)
Dennis, Roger A., Elstree, Hertfordshire. 1999
Galdeano, Nerea L., Golders Green, London. 1999
Kendall, David C., Addiscombe, Surrey. 1999
Lee, Martin, South Croydon, Surrey. 1999
Maslik, Magdalena M., Fulham, London. 1999
Perez Dorao, Carlos, Golders Green, London. 1999
Sinclair, Gary, London. 1999

ADVERTISING in the Journal of Gemmology

The Editors of the Journal invite advertisements from gemstone and mineral dealers, publishers, and others with interests in the gemmological, mineralogical, lapidary and jewellery fields.

Rates per insertion, excluding VAT, are as follows:

<table>
<thead>
<tr>
<th>Whole page</th>
<th>Half page</th>
<th>Quarter page</th>
</tr>
</thead>
<tbody>
<tr>
<td>£180</td>
<td>£100</td>
<td>£60</td>
</tr>
</tbody>
</table>

Enquiries to Mary Burland,
GAGTL, 27 Greville Street, London EC1N 8TN
Tel: 0171 404 3334 Fax: 0171 404 8843
ROCK 'N' GEM SHOWS

Exhibitors Displaying & Selling

KEMPTON PARK RACECOURSE, Sunbury On Thames, Middx.
17th & 18th April

NEWCASTLE RACECOURSE, Gosforth Park, Newcastle.
8th & 9th May

HAYDOCK PARK RACECOURSE, Newton-Le-Willows, Merseyside.
22nd & 23rd May

YORK RACECOURSE, York - Just off A64.
18th & 19th September

CHELTENHAM RACECOURSE, Prestbury, Glos.
2nd & 3rd October

Saturday & Sunday 10am - 5pm
Open to both Trade & Public.
Refreshments, Free Parking, Wheelchair Access
Kempton: Adults £2.50, Seniors £2.00, Children £1.00
All Other Shows: Adults £2.25, Seniors £1.75, Children £1.00

THE EXHIBITION TEAM LTD, 01628 621697
**Pearls**  
**Gemstones**  
**Lapidary Equipment**

**GENOT L**  
Since 1953

**CH. De Wavre, 850**  
**B-1040 Bxl – Belgium**

**Tel: 32-2-647.38.16**  
**Fax: 32-2-648.20.26**  
**E-mail: gama@skynet.be**

www.gemline.org  
www.geofana.net

---

**Museums, Educational Establishments, Collectors & Students**

I have what is probably the largest range of genuinely rare stones in the UK, from Analcime to Wulfenite. Also rare and modern synthetics, and inexpensive crystals and stones for students. New computerised lists available with even more detail. Please send £2 in 1st class stamps refundable on first order (overseas free).

**Two special offers for students:**
New Teach/Buy service and free stones on an order.

A.J. French, FGA  
82 Brookley Road, Brockenhurst,  
Hants SO42 7RA  
Telephone: 01590 623214

---

**Ruppenthal (U.K.) Limited**

Gemstones of every kind, cultured pearls, coral, amber, bead necklaces, hardstone carvings, objets d’art, 18ct gold gemstone jewellery and antique jewellery.

We offer a first-class lapidary service.

By appointment only  
1a Wickham Court Road, West Wickham, Kent BR4 9LQ  
Tel: 0181-777 4443, Fax: 0181-777 2321

---

**Antique Jewellery**  
**Modern 18ct and 9ct Gem-set Jewellery**
We look after all your insurance PROBLEMS

For nearly a century T.H. March has built an outstanding reputation by helping people in business. As Lloyds brokers we can offer specially tailored policies for the retail, wholesale, manufacturing and allied jewellery trades. Not only can we help you with all aspects of your business insurance but we can also take care of all your other insurance problems, whether it be home, car, boat or pension plan.

We would be pleased to give advice and quotations for all your needs and delighted to visit your premises if required for this purpose, without obligation.

Contact us at our head office shown below.

T.H. March and Co. Ltd.
29 Gresham Street,
London EC2V 7HN. Telephone 0171-606 1282
Also at Birmingham, Manchester, Glasgow and Plymouth.
Lloyd's Insurance Brokers
E. A. Thomson (Gems) Ltd.
Precious stone merchants
also representing:
Morris Goldman Gems Ltd
Chapel House, Hatton Place,
Hatton Garden
London EC1N 8RX, England.
Tel: 0171-242 3181
Telex: 27726 THOMCO-G
Fax: 0171-831 1776

PROMPT LAPIRADY SERVICE!

Gemstones and diamonds cut to your
specification and repaired on our
premises.
Large selection of gemstones including
rare items and mineral specimens in
stock.
Valuations and gem testing carried out.
Mail order service available.

R. HOLT & CO. LTD

98 Hatton Garden, London EC1N 8NX
Telephone 0171-405 0197/5286
Fax 0171-430 1279

MAGGIE CAMPBELL PEDERSEN
ABIPP, FGA

JEWELLERY & GEMSTONE
PHOTOGRAPHY

Tel: 0181-994 8341
Fax: 0181-723 4266
M.J. Gems Imports & Exports

Suppliers of all types of gemstones for the trade

including

a wide range of interesting stones

ideal for designers of hand-made jewellery

Now dealing in

NATURAL COLOURED DIAMONDS

3rd Floor, Colonial Buildings, 59-61 Hatton Garden, London EC1N 8LS
Tel: 0171 405 8303 Fax: 0171 404 0274

GS200 Microscope (220v)

- Turret System giving a range of magnification from 10x to 60x; 10x and 20x eyepieces supplied
- Darkfield, transmitted and overhead light features
- Accessories include stone tweezers, diaphragm and microscope cover

Normally priced at £425

SPECIAL OFFER TO GAGTL MEMBERS OF ONLY £323*

(Prices exclusive of VAT, postage and packing)

*Offer extended to 30 June 1999

Gemmological Instruments Ltd., 27 Greville Street, London EC1N 8TN.
Tel: 0171 404 3334 Fax: 0171 404 8843
Guide to the preparation of typescripts for publication in
The Journal of Gemmology

The Editor is glad to consider original articles shedding new light on subjects of gemmological interest for publication in The Journal. Articles are not normally accepted which have already been published elsewhere in English, and an article is accepted only on the understanding that (1) full information as to any previous publication (whether in English or another language) has been given, (2) it is not under consideration for publication elsewhere and (3) it will not be published elsewhere without the consent of the Editor.

Typescripts Two copies of all papers should be submitted on A4 paper (or USA equivalent) to the Editor. Typescripts should be double spaced with margins of at least 25 mm. They should be set out in the manner of recent issues of The Journal and in conformity with the information set out below. Papers may be of any length, but long papers of more than 10 000 words (unless capable of division into parts or of exceptional importance) are unlikely to be acceptable, whereas a short paper of 400-500 words may achieve early publication.

The abstract, references, notes, captions and tables should be typed double spaced on separate sheets.


Title page The title should be as brief as is consistent with clear indication of the content of the paper. It should be followed by the names (with initials) of the authors and by their addresses.

Abstract A short abstract of 50-100 words is required.

Key Words Up to six key words indicating the subject matter of the article should be supplied.

Headings In all headings only the first letter and proper names are capitalized.

A This is a first level heading
First level headings are in bold and are flush left on a separate line. The first text line following is flush left.

B This is a second level heading
Second level headings are in italics and are flush left on a separate line. The first text line following is flush left.

Illustrations Either transparencies or photographs of good quality can be submitted for both coloured and black-and-white illustrations. It is recommended that authors retain copies of all illustrations because of the risk of loss or damage either during the printing process or in transit.

The abstract, references, notes, captions and tables should be typed double spaced on separate sheets.


Title page
The title should be as brief as is consistent with clear indication of the content of the paper. It should be followed by the names (with initials) of the authors and by their addresses.

Abstract A short abstract of 50-100 words is required.

Key Words Up to six key words indicating the subject matter of the article should be supplied.

Headings In all headings only the first letter and proper names are capitalized.

A This is a first level heading
First level headings are in bold and are flush left on a separate line. The first text line following is flush left.

B This is a second level heading
Second level headings are in italics and are flush left on a separate line. The first text line following is flush left.

Illustrations Either transparencies or photographs of good quality can be submitted for both coloured and black-and-white illustrations. It is recommended that authors retain copies of all illustrations because of the risk of loss or damage either during the printing process or in transit.

Diagrams must be of a professional quality and prepared in dense black ink on a good quality surface. Original illustrations will not be returned unless specifically requested.

All illustrations (maps, diagrams and pictures) are numbered consecutively with Arabic numerals and labelled Figure 1, Figure 2, etc. All illustrations are referred to as ‘Figures’.

Tables Must be typed double spaced, using few horizontal rules and no vertical rules. They are numbered consecutively with Roman numerals (Table IV, etc.). Titles should be concise, but as independently informative as possible. The approximate position of the Table in the text should be marked in the margin of the typescript.

Notes and References Authors may choose one of two systems:

(1) The Harvard system in which authors’ names (no initials) and dates (and specific pages, only in the case of quotations) are given in the main body of the text, e.g. (Gübelin and Koivula, 1986, 29). References are listed alphabetically at the end of the paper under the heading References.

(2) The system in which superscript numbers are inserted in the text (e.g. ... to which Gübelin refers.) and referred to in numerical order at the end of the paper under the heading Notes. Informational notes must be restricted to the minimum; usually the material can be incorporated in the text. If absolutely necessary both systems may be used.

References in both systems should be set out as follows, with double spacing for all lines.


Abbreviations for titles of periodicals are those sanctioned by the World List of scientific periodicals 4th edn. The place of publication should always be given when books are referred to.
Contents

Heat-treated Be-Mg-Al oxide (originally musgravite or taaffeite) 353
K. Schmetzer, H.-J. Bernhardt and O. Medenbach

Mineral inclusions in emeralds from different sources 357
I.I. Moroz and I.Z. Eliezri

Chrome chalcedony - a review 364
J. Hyrsl

A colorimetric study of the alexandrite effect in gemstones 371
Y. Liu, J.E. Shigley, E. Fritsch and S. Hemphill

Colour hue change of a gem tourmaline from the Umba Valley, Tanzania 386
Y. Liu, J.E. Shigley, and A. Halvorsen

Abstracts 397

Book Reviews 402

Proceedings of the Gemmological Association and Gem Testing Laboratory of Great Britain and Notices 404

Cover Picture
A sapphire shown under three different light sources to illustrate the colour-change (clockwise from top: fluorescent light, natural daylight and incandescent light). See 'A colorimetric study of the alexandrite effect in gemstones'. pp 371-85.