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ABSTRACT: Determining the geographic origin of Cu-bearing tourmaline poses a significant challenge
in gemmology, particularly when traditional microscopic methods yield inconclusive results. This
study applies a combined analytical and computational approach using 469 gem-quality samples
from Brazil, Mozambique and Nigeria. A total of 57 elements (from Li to U) were quantified using
full-mass-spectrum LA-ICP-TOF-MS. The high-dimensional elemental dataset was reduced to
interpretable 2D maps using non-linear unsupervised machine-learning algorithms, including
t-distributed stochastic neighbour embedding (t-SNE) and uniform manifold approximation and
projection (UMAP). These methods successfully identified complex patterns and distinct subgroups,
revealing compositional similarities not captured by traditional linear approaches. The resulting
clusters provided a clear framework for geographic origin determination of unknown samples.
Elemental signatures of key elements (i.e. Na, Ca, Li, Ti, Fe, Mn, Cu, Ga, Sr, La and Pb) highlighted
their influence on clustering and related geochemical variations to colour and geographic origin.
Unsupervised machine-learning algorithms do not rely on predefined origin labels. This reduces
errors caused by uncertain origin information and helps reveal statistical outliers that may point to
new or undocumented sources. By integrating colour information with compositional clustering, the
method also provides a possible framework for identifying heat treatment in high-clarity stones.
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opper-bearing tourmalines (i.e. fluor-elbaite

and fluor-liddicoatite) are beautiful and

fascinating members of the tourmaline

family. First recognised in the late 1980s
in Paraiba State, Brazil (Koivula & Kammerling
1989; Fritsch et al. 1990; Henn et al. 1990), these
gems display colours distinct from those of other
tourmalines, with hues that range from vivid blue—
known in the trade as ‘neon’ or ‘electric’ blue—to green
and purple. Major, minor and trace amounts of Cu
and Mn are responsible for their intense colouration.
Structurally, these tourmalines accommodate Cu
substitution at the distorted octahedral Y-site, which
generates characteristic Cu-related absorption bands
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in the 700-900 nm spectral region (Henn et al. 1990).

Following the earlier discoveries in Brazil,
additional Cu-bearing tourmaline deposits were
identified in 2001 in the Edeko area of Nigeria
(Smith et al. 2001; Zang et al. 2001). Later, in 2004,
discoveries in the Mavuco region of north-eastern
Mozambique further expanded the known geographic
and geochemical range of these rare tourmalines
(Wentzell 2004; Abduriyim & Kitawaki 2005; Laurs
et al. 2008). More recently, another alluvial deposit
of Cu-bearing tourmaline was reported in the Maraca
region of Mozambique, about 20 km from Mavuco
(Karampelas & Klemm 2010; Milisenda & Miiller
2017). As is common practice in the trade, Cu-bearing
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Figure 1: These Cu-bearing tourmalines (2-20
ct) are representative of the samples analysed
in this study. They are all from Brazil except

for the purple specimen on the right, which
originates from Mavuco, Mozambique. The
individual images are scaled to similar visual
size for comparison, and to illustrate the
typical colour range of Cu-bearing tourmaline.
Composite photo by H. A. O. Wang and Julien
Xaysongkham, SSEF.

tourmalines from all these geographic origins may
be called ‘Paraiba tourmaline’, which refers to the
Brazilian locality of Paraiba where this tourmaline
variety was first mined (LMHC 2023). However,
specimens of ‘neon’ blue colour from Brazil remain
the benchmark in the trade, in part for their beauty
and rarity, but mostly because they link to the histor-
ical discovery of this gem.

Although the geographic origin of Cu-bearing
tourmaline is a critical factor influencing its market
value, this determination remains a challenge
for gemmological laboratories. Due to their high
clarity and diverse colours (Figure 1), traditional
methods (such as spectroscopic analysis and micro-
scopic examination of inclusions) are increasingly
being complemented by advanced techniques such
as laser ablation inductively coupled plasma mass
spectrometry (LA-ICP-MS), which produces detailed
elemental data that can reveal subtle geochemical
differences helpful for distinguishing geographic
origin (Abduriyim et al. 2006; Katsurada et al. 2019).

Recent advancements in machine learning (ML),
a subdomain of artificial intelligence (Al; see Box
A), have introduced new strategies for analysing
complex datasets, improving the consistency and
accuracy of gemstone origin determination. To our
knowledge, the first scientific application of ML
for identifying the geographic origin of gemstones
was done by Dereppe et al. (2000), who explored
artificial neural networks to classify emeralds from
various origins. Since then, most studies of ML
applied to gem materials have focused on techniques
that employ models such as deep learning (Chow &
Reyes-Aldasoro 2021; Bendinelli et al. 2024), artifi-
cial neural networks, random forests and support
vector machines (Chow & Reyes-Aldasoro 2021;
Hardman et al. 2024; Seneewong-Na-Ayutthaya et
al. 2025), and partial least squares regression (Dutrow
et al. 2024). All these supervised ML methods (see
Box A) require large datasets confidently labelled

with origin information. In gemmology, assembling
such datasets is challenging because gem production
is dynamic. New deposits are continuously discov-
ered, and artisanal or small-scale mining operations
typically lack the rigorous documentation required
to establish a definitive chain of custody. Even in
well-studied deposits, geochemical variability can
blur the boundaries of origin, leaving some identifi-
cations to be based more on expert judgment than on
unequivocal data (Giuliani & Groat 2019).

To address these limitations, we previously intro-
duced and explored an unsupervised ML workflow
for gemstone origin determination (Wang & Krzem-
nicki 2021; Krzemnicki et al. 2024). Unlike supervised
methods, unsupervised ML does not require labelling of
data with geographic origin before calculation (again,
see Box A); instead, it identifies similarities in chemical
composition. Most gems analysed in a lab were not
collected in situ, so origin information is typically
inferred from trusted sources, which may be subjec-
tive. In contrast, elemental data is obtained through
objective analytical methods, such as LA-ICP-MS.

LA-ICP-MS can quantify more than 50 elements,
but the resulting high-dimensional dataset (that
is, with a large number of variables) is difficult
for humans to interpret directly. Dimensionality-
reduction techniques, such as t-distributed stochastic
neighbour embedding (t-SNE; van der Maaten &
Hinton 2008), allow effective projection of high-
dimensional data into a lower-dimensional space
without a priori labelled data (Wang & Krzemnicki
2021). In the present study, we expand our previous
approach by incorporating an additional unsupervised
ML technique—uniform manifold approximation and
projection (UMAP; Mclnnes et al. 2018; Healy &
Mclnnes 2024)—to further investigate the inherent
geochemical signatures of Cu-bearing tourmaline.
The goals of this approach were to detect subtle
clustering patterns and to refine the classification of
geographic origin.
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BOX A: ARTIFICIAL INTELLIGENCE VS MACHINE LEARNING
(SUPERVISED AND UNSUPERVISED APPROACHES)

Artificial intelligence (Al) refers to a broad field
focused on designing and developing computer
systems that can perform certain tasks which
have typically required human intelligence. The
foundations of Al research were laid by English
mathematician Alan Turing (Turing 1950). A few
years later, the term was coined by John McCarthy
in a proposal for a workshop at Dartmouth College
(McCarthy et al. 1955). Al tasks include reasoning
through complex situations, understanding natural
language (i.e. human language in the context of AI)
and making decisions under uncertainty.

Machine learning (ML) is a specialised
subfield of Al. Rather than relying on explicitly
programmed instructions, ML enables computers
to learn patterns and relationships directly from
data. By repeatedly being exposed to examples,
such as elemental compositions of gems with or
without their geographic origin labels, ML models
can identify statistical patterns that allow them
to classify, predict or group data based on input
data. For instance, given trace-element data, an
ML model might learn to distinguish between
gems from different geographic origins (e.g.
Dereppe et al. 2000; Bendinelli et al. 2024; Senee-
wong-Na-Ayutthaya et al. 2025).

ML algorithms typically fall into three types:

1. Supervised learning. A model is trained on
labelled examples, connecting input (e.g.
elemental composition) to known output (e.g.
geographic origin). The input is normally split
into training, validation and testing datasets.

2. Unsupervised learning. A model examines
unlabelled data to uncover inherent patterns,
clusters or anomalies. It can group stones
by elemental similarity or identify unusual
specimens as outliers.

3. Reinforcement learning. An agent—an
autonomous decision-making entity typi-
cally implemented using one or more models—
learns optimal strategies by interacting with an
environment and receiving rewards. Although
less common in gemmology today, it holds
potential for applications such as automated
grading or robotic sample handling.
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When choosing between supervised and
unsupervised ML approaches, it is important
to consider the strengths and limitations of
each method. Supervised ML relies on labelled
datasets, such as known geographic origins, and
is highly effective when accurate, comprehensive
ground-truth information is available. However,
in gemmology, origin labels are often difficult to
verify and may be based on subjective or incom-
plete information. Mislabelled data can introduce
errors during model training, reducing the relia-
bility of geographic origin determinations.

Unsupervised ML, by contrast, does not
require pre-assigned labels. Instead, it identifies
clusters and patterns based solely on the intrinsic
structure of the data. This makes unsupervised
methods preferable when such ground truth is
either unavailable or unreliable. Unsupervised
approaches also can serve as an exploratory
step before applying supervised models. By
revealing the underlying structure of the data
and minimising bias from potentially unreliable
labels, unsupervised methods help refine datasets
and improve the output quality of subsequent
ML methods.

In gemmology, Al and ML are transforming
traditional workflows by augmenting, rather than
replacing, the role of expert gemmologists (Wang
& Krzemnicki 2021; Seneewong-Na-Ayutthaya et
al.2025). These tools serve as powerful assistants:
rapidly processing large datasets, highlighting
outliers or anomalies, and uncovering hidden
patterns that may not be immediately evident. This
human-machine collaborative approach enhances
both efficiency and accuracy, allowing gemmol-
ogists to focus on higher-level interpretation and
decision making, effectively acting as supervisors
of the data-driven process.

Understanding the distinction between Al’s
broad, goal-oriented applications and ML’s
more focused, data-driven methodologies will
allow gemmologists and researchers to choose
the most suitable tools for specific tasks such
as origin determination, quality grading and
treatment detection. It will also help prevent
the misuse or overstatement of terminology,
such as the tendency to label basic statistical
analyses as ‘Al’.
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MATERIALS AND METHODS

Samples

The study comprised analyses of 469 gem-quality
Cu-bearing tourmalines (Table I). The samples were
obtained from several reliable sources, including the
SSEF reference collection, the collection of Prof.
Dr Henry A. Hénni, reputable clients and mining
companies, and samples with origin labelling confi-
dently determined by gemmologists. Most of the
specimens were fluor-elbaite (hereafter, simply
elbaite), a Na-rich tourmaline with the general
formula Na(Li, 5Al, 5)Al¢Sis0,5(BO;3);(OH);(F),
from deposits in the Paraiba and Rio Grande
do Norte states of Brazil, the Mavuco region of
Mozambique and the Edeko region of Nigeria.
Also included were Ca-rich tourmaline samples
of the fluor-liddicoatite species (hereafter, simply
liddicoatite), with the general formula Ca(Li,Al)
AlSic0,5(BO;3);(OH);(F), from the Maraca region
of Mozambique. All samples, either faceted or
rough, had at least one polished surface to minimise
contamination during laser ablation inductively
coupled plasma time-of-flight mass spectrometry
(LA-ICP-TOF-MS) analysis.

The samples spanned a wide range of colours,
mainly blue to green and purple, with various
saturation levels. For simplicity, colours were
categorised by main hue—blue, green and

Table I: Summary of the 469 Cu-bearing tourmaline samples
analysed in this study.

Geographic No. Weight Dominant
origin samples  range (ct) hues

Brazil 253* Melee—102.8 | Blue, green, purple
MEFEEIRNE || 06-730 | Blue, green, purple
(Mavuco) : ’ » §reen, purp
Mozambique

(Maraca) 72 0.9-37.8 Blue, green
Nigeria 15 0.6-61.3 Blue, green, purple

* Includes 71 samples collected during a field trip in 2017 to the
Sao José da Batalha, Mulungu and Alto dos Quintos mines
(Klumb 2018).

purple—using standardised illumination at 4500 K.
Some of the samples used in this study had
undergone heat treatment (disclosed and undis-
closed), a common practice used to reduce the purple
hue and enhance blue colouration in Cu-bearing
tourmaline (Abduriyim et al. 2006). Although heat-
treatment detection was not the primary focus of
this study, the methodology presented also offers
a promising new direction for identifying heat
treatment in this type of tourmaline.

LA-ICP-TOF-MS Analysis

As outlined in Figure 2, analyses were conducted
using a 193 nm ArF excimer laser-ablation system
(NWR193UC, ESI, USA) coupled to an ICP-TOF-MS

Laser ablation

ArF excimer
193 nm laser

Analyse on gemstone girdle

ICP-Time-of-Flight-MS

Full mass spectrum
High mass resolution
Low limit of detection

/

CEr =55 <=

Multielement dataset

Geographic origin evaluated
with help of ML visualisation of
multielement dataset

Colour-coded clusters based on
origins of reference samples

3
XY
vete

Dataset projected to 2D/3D
space by unsupervised ML

Figure 2: A schematic workflow illustrates the procedure using unsupervised ML to determine the geographic origin of an unknown
sample. LA-ICP-TOF-MS measurements generate multielement data, which are projected in 2D/3D space using algorithms such as t-SNE
and UMAP. The resulting low-dimensional plots are then coloured according to geographic origin or other attributes, such as elemental
concentration or sample colour, to reveal compositional relationships. Finally, a ggmmologist compares the composition of an unknown
sample to the reference data to give an opinion on its geographic origin.
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(icpTOF R, Tofwerk AG, Switzerland). The instru-
ment was tuned daily to simultaneously measure
from 7Li* to 23%U"*, achieving a mass resolving
power of approximately 3,000 at 238U*. Each sample
was ablated in hole-drilling mode on three to four
inclusion-free spots. The laser spot was 100 pm in
diameter for the samples and 75 pm for the standard
reference materials (SRMs). Each position received
600 laser shots at 20 Hz and about 5.6 J/cm? fluence.
Helium was used as the carrier gas to transport the
aerosol into the plasma. Five pre-cleaning shots
were applied at each position to remove surface
contaminants.

Because no suitable matrix-matched tourmaline
standard exists for the full suite of trace elements
of interest, we employed a dual-SRM calibration
using NIST 610 and NIST 612 glasses for external
calibration. Each SRM was measured before and
after the unknowns to monitor instrument drift.
Quantification was performed using 2°Si* as the
internal standard, followed by total mass normali-
sation to account for matrix effects (Guillong et al.
2005). If the concentration of a given element fell
below its detection limit, the value was replaced
with a random number drawn from the log-normal
distribution of detection limits for that element
across all analyses. Further details of this approach
are provided in Wang and Krzemnicki (2021). The
dataset comprised Cu-bearing tourmaline analyses
collected over a five-year period.

Unsupervised Machine Learning
Following quantification of 57 elements, to explore
the complex multielement dataset and identify
natural clusters and compositional similarities among
samples, we used two unsupervised ML algorithms:
t-SNE and UMAP. All computational analyses were
conducted using Python software (version 3.11.9) on
a laptop with an Intel 17 central processing unit. We
then generated two-dimensional (2D) scatterplots, and
geographic-origin information was colour coded and
overlaid on the plots. The same approach was used to
examine correlations between elemental concentra-
tions and the dominant hues of the samples.
Because it was not possible to obtain confident
provenance information for every specimen, the study
included both reference samples of known origin and
samples of originally unknown origin. The former—
those collected in the field or provided by verified
sources—served as reference anchors in the unsuper-
vised ML embedding. Once clusters were defined
based on their multielement similarities, unknown
samples could be positioned relative to these reference
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clusters. If an unknown sample consistently plotted
within a cluster defined by reference material from
a specific locality, its geographic origin was then
inferred.

t-SNE. A detailed explanation of the t-SNE algorithm
is provided in Box B. In this study, t-SNE was imple-
mented using the scikit-learn package, version 1.5.1
(Pedregosa et al. 2011), to reduce the dimension-
ality of the multielement dataset to two dimensions.
Before analysis, the elemental concentration dataset
was log-transformed to reduce skew and compress
the dynamic range. The t-SNE algorithm was config-
ured with an ‘seuclidean’ distance metric, a learning
rate of 100, a maximum of 5,000 iterations and
operation in ‘exact’ mode for enhanced accuracy.
An exaggeration factor of 30 was applied at the
beginning of the optimisation process to enhance
cluster separation. Each calculation round took about
three minutes.

We tested a range of perplexity values (10-200;
see Box B) to optimise the balance between local and
global structure preservation (Figure DD-1 in The
Journal’s online data depository). Local structure
refers to relationships among nearby data points—
samples with similar compositions that remain close
together statistically. Global structure describes the
overall arrangement of all clusters in a dataset. Based
on the selection of a perplexity of 30, the resulting
2D coordinates were visualised as scatterplots.
Although 3D projections offered better subgroup
separation when interactively viewed, 2D plots
were chosen for publication due to their simplicity
and clarity.

UMAP. As an alternative method to t-SNE, we
employed UMAP (see Box C) for dimension
reduction. Using the umap-learn package (version
0.5.7; Mclnnes et al. 2018), we projected the high-
dimensional elemental dataset into 2D space to better
visualise complex inter-sample relationships. As with
t-SNE, the dataset was first log-transformed. The
UMAP analysis was then configured with a Euclidean
distance metric. Each calculation round took less than
one minute. We explored a minimum distance (DIST)
0f0.1-0.99 and a variable number (10-200) of nearest
neighbours (NN) to find a suitable clustering pattern
that balanced the global and local structures (see
Figure DD-2 in the data depository for comparison).
We chose DIST = 0.5 and NN = 30 to efficiently
capture both local and global data structures, forming
a robust method for subsequent cluster analyses and
comparisons with t-SNE outcomes.
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BOX B: t-DISTRIBUTED STOCHASTIC NEIGHBOUR EMBEDDING (t-SNE)

t-SNE is an unsupervised ML technique used
to visualise complex high-dimensional datasets
in two or three dimensions. In gemmology, it is
particularly useful for interpreting multielement
chemical data, such as the elemental fingerprints
of gem materials. Each measured element in a
gem represents one dimension in the dataset.
With dozens of elements per sample, the resulting
data exist in a high-dimensional space that can be
difficult to interpret visually. The t-SNE method
helps by projecting this high-dimensional structure
into a lower-dimensional space, typically two
dimensions, while preserving the relationships
between samples as faithfully as possible (van der
Maaten & Hinton 2008). Additional resources for
explaining the t-SNE algorithm include Watten-
berg et al. (2016) and Kemal (2020). Numerous
dimensionality-reduction techniques exist in
addition to t-SNE. Readers interested in a broader
overview are encouraged to consult comparative
review papers on these methods (van der Maaten
et al. 2009; Wani 2025). The authors evaluated
several methods and found that t-SNE and UMAP
performed best for the Cu-bearing tourmaline
dataset used in this study.

The process starts by measuring how similar
each analysis (or data point in the plot) is to every
other analysis based on their elemental compo-
sitions. These similarities are converted into
probabilities. Next, t-SNE maps these points into
two dimensions, again using probabilities, but now
derived from a special statistical function called
the t-distribution. This distribution is particularly
useful because it has heavier tails compared to the
standard Gaussian distribution, meaning it better

RESULTS AND DISCUSSION

Comparison of Different Methods

of Data Analysis

To assess the effectiveness of various data-separa-
tion and dimensionality-reduction techniques for
determining the geographic origin of Cu-bearing
tourmaline, we applied four approaches to the same
57-element dataset: bivariate scatterplots, principal
component analysis (PCA), t-SNE and UMAP. In
each case, the resulting 2D scatterplots were colour
coded after calculation using known geographic
origins—Brazil, Mozambique (Mavuco and Maraca)

handles points that are far apart, thus clearly
separating different clusters. Note that the axes
in t-SNE plots have no physical or composi-
tional meaning; only the relative distances and
spatial relationships between data points are
interpretable.

The critical step for t-SNE is to ensure these
probabilities from the simplified two-dimensional
map closely reflect those from the original high-
dimensional dataset. To accomplish this, t-SNE
uses a mathematical measure called Kullback-
Leibler (KL) divergence (Kullback & Leibler 1951).
By minimising KL divergence, the algorithm ensures
that points close together in the original high-dimen-
sional space remain close in the simpler 2D map,
while dissimilar points are clearly separated.

A key parameter in t-SNE is perplexity (Figure
DD-1), which represents how many neighbours
surround each data point (i.e. its statistically
similar neighbours). A lower perplexity tends to
focus on local structure, potentially leading to
the breakup of global clusters and the appearance
of many small, tightly packed groups. A higher
perplexity considers more neighbours, which
can provide a better representation of the global
structure of the data, potentially resulting in more
cohesive and broader clusters. However, very
high perplexity values might blur local details.

While t-SNE excels at revealing hidden clusters
and patterns, it is a non-deterministic method,
meaning repeated runs may produce slightly
different layouts. For more details, refer to the
original description of t-SNE (van der Maaten &
Hinton 2008) or visit https://scikit-learn.org/stable/
modules/generated/sklearn.manifold. TSNE.html.

and Nigeria—to independently evaluate the clustering
performance of pre-assigned labels.

Bivariate Scatterplots. We began with traditional
two-element scatterplots, such as Cu vs Ga (Figure
3a). Brazilian samples showed higher Cu and lower
Ga concentrations, while Maraca and Mavuco samples
exhibited higher Ga. Nigerian tourmalines displayed
broad variability in Cu but were confined to a narrow
Garange. Despite these trends, overlap among regions
was significant. Thus, such plots offer limited discrim-
ination. Evaluating additional element pairs becomes
unwieldy as the number of elements increases.
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BOX C: UNIFORM MANIFOLD APPROXIMATION AND PROJECTION (UMAP)

UMAP is another unsupervised ML technique that
can simplify high-dimensional data. Like t-SNE,
it is designed to visualise complex multi-dimen-
sional datasets and uncover hidden patterns. UMAP
assumes that the data lie on a continuous, non-linear
surface (called a manifold) and aims to reconstruct
the structure of this manifold in fewer dimensions
without losing important relationships. The process
starts by building a graph (or network) of the
high-dimensional dataset by identifying the nearest
neighbours for each data point and quantifying how
strongly they are connected. The resulting ‘fuzzy’
graph captures the local structure of the data. In the
second step, UMAP optimises a low-dimensional
layout that preserves these relationships as closely
as possible (Mclnnes et al. 2018).

UMAP typically runs faster and handles large
datasets more efficiently than t-SNE, making it better
suited for extensive data analysis (Mclnnes et al.
2018). However, t-SNE generally excels at capturing
fine local details, while UMAP maintains a balance
between preserving local and global relationships,
providing a more comprehensive view of the data’s
organisation. UMAP tends to be less sensitive to
parameter choices than t-SNE, yielding consistent
results with minimal fine tuning. For gemmological

Component Analysis. We applied PCA using
MATLAB 2018b software to explore multivariate
relationships within the dataset. In this approach, the
Z-score standardised dataset was mathematically
transformed into a new set of orthogonal axes, known
as principal components. Each principal component
represents a linear combination of the original
variables and is ordered according to the amount of
variance it explains. This transformation reduced
the dimensionality of the dataset while retaining as
much of the original variability as possible, allowing
the dominant geochemical trends to be visualised
and interpreted more effectively than the bivariate
scatterplots.

As shown in Figure 3b, PCA effectively separated
the Maraca (Mozambique) samples, which are
liddicoatite, from the others (elbaite) due to their
distinctly greater Ca, Li and rare-earth element (REE)
contents. However, among the elbaite tourmalines,
PCA showed substantial overlap, limiting its ability
to resolve subtle geochemical differences. This
behaviour reflects a common limitation of PCA when
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applications, a good practice is to use both methods:
first use UMAP as a fast screening to quickly search
for broader global layouts, and then use t-SNE to
enhance the local data structures.

UMAP also includes user-defined parameters
such as: number of nearest neighbours to control
how local the analysis is (smaller values emphasise
fine-grained clustering and larger values capture
broader patterns); minimum distance to affect how
tightly points are packed together in the reduced
space (lower values lead to denser clusters);
and distance metric to define how distances are
measured in the high-dimensional (e.g. Euclidean)
space (Figure DD-2).

In gem research, UMAP can be especially
useful for revealing patterns among chemically
similar samples, identifying outliers in the data
and distinguishing subtle differences in multi-
element fingerprints. Because it does not require
origin labels, it is ideal for exploring unlabelled
or partially labelled datasets, and can serve as
a valuable first step before applying supervised
learning or manual classification. UMAP offers a
complementary approach to t-SNE to cross-val-
idate data visualisation. For more details about
UMAP, visit https://umap-learn.readthedocs.io/en.

datasets are dominated by compositional gradients.
The first two principal components (PC1 and PC2)
are mainly driven by high-variance elements that
separate liddicoatite from elbaite. Consequently, trace
elements such as Cu and Ga contribute little to these
components, limiting their discriminating power. To
uncover these more subtle geochemical relationships,
we performed a separate PCA restricted to elbaite
samples (Figure DD-3 in the data depository), but
overlaps between different geographic origins were
still significant.

Machine-learning Methods. The unsupervised
ML algorithms t-SNE and UMAP are non-linear
and produced more nuanced and informative plots
(Figures 3c—e). Critically, neither algorithm used
geographic-origin labels during computation (Figure
3¢). They were only added afterwards, ensuring an
unbiased clustering result. Compared to PCA and
bivariate plots, t-SNE (Figure 3d) and UMAP (Figure
3e) not only offered separation between elbaite and
liddicoatite samples, but also significantly improved
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Comparison of Data Visualisation Methods
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Figure 3: Four data-reduction methods were applied to the 57-element dataset of Cu-bearing tourmalines from Brazil, Mozambique
(Mavuco and Maraca) and Nigeria, for comparison: (a) Cu vs Ga bivariate scatterplot; (b) plot of PCA scores; (¢) unlabelled t-SNE plot;
(d) t-SNE plot colour-coded by origin; and (e) UMAP projection colour-coded by origin. Both of the non-linear methods (d, €) provide
clearer separation of geographic groups and intra-origin subclusters than the linear approaches (a, b). Note that the axes in the t-SNE
and UMAP plots have no inherent meaning; only the relative distances and groupings of points carry interpretive value.

clustering among samples from Brazil, Mozambique
and Nigeria.

Notably, both methods also revealed subclus-
tering of data within Brazil and Mozambique
origins (Figures 3d, e). Brazilian samples split into
more than two distinct subgroups, and Mavuco and
Maraca samples divided into two subgroups. While
more subgroups may be revealed by tuning algorithm
parameters, over-segmentation might reflect experi-
mental variation rather than true chemical differences
of geological significance.

Although UMAP appears to produce tighter and
more distinct subgroups than t-SNE, this may be
due to specific parameter settings of the algorithms.
Therefore, we recommend a combined workflow
in which both t-SNE and UMAP are applied to the
multielement dataset, showing different capabilities
in global and local clustering to (1) cross-validate
emergent clusters, (2) identify geographic origin and
intra-origin substructures, and (3) detect anomalous
points that may need further investigation.

In addition, new reference samples with well-doc-
umented geographic origins should be regularly
analysed to validate existing cluster labels. If newly
analysed samples form separate clusters, this may
suggest the presence of previously unrecognised
clusters or, potentially, new deposits, either due to
delayed reporting of new finds or, in rare cases,
intentional concealment of source information.
This dual-method approach can increase confidence
in origin assignments and support the continuous
development of a robust, automated, supervised ML
classification system for gemmological laboratories.

Elemental Signature Visualisation

In order to highlight how specific elements contribute
to the cluster separation of specific geographic origins,
the relative concentrations of selected elements are
represented as ‘heat maps’ on the t-SNE-generated
scatterplot (Figure 4). (While this is shown here only
for t-SNE, the same can be done with UMAP.) Each
data point was coloured according to its relative
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concentration for a given element, from deep blue
(low concentration) to deep red (high concentration).
These colour gradients were normalised independently
for each element, so they reflect relative variations
within an element across the dataset, but they do not
allow direct comparison between different elements.
The corresponding concentration ranges for these
elements are summarised in Table DD-I in the data
depository.

Sodium dominates the elbaite tourmaline clusters
(i.e. Brazil, Nigeria and Mavuco [Mozambique];
Figure 4b), as expected from elbaite’s composition
(Na-Li tourmaline). The Ca and Li concentrations
peak sharply in the Maraca (Mozambique) cluster,
consistent with the presence of liddicoatite (Ca-Li
tourmaline; Figure 4c, d). Within the Maraca cluster,
Ca exhibits a clear gradient, where samples at the
lower end of the plot have more Ca than at the upper
end. This effect is difficult to interpret because the
stones from Maraca are from an alluvial deposit, so

no reliable geological context information is available
(Katsurada & Sun 2017). By contrast, Na-rich elbaite
samples show less origin-related differentiation based
on Na content alone, indicating that other elements are
needed to resolve subgroups in the elbaite population.

Figures 4e—41 show additional major, minor and
trace elements (Ti, Fe, Mn, Cu, Ga, Sr, La and Pb)
on a logarithmic scale, reflecting their wide dynamic
range. The elements Ti (Figure 4e), Fe (Figure 4f)
and Mn (Figure 4g) show pronounced concentration
differences within each geographic-origin group,
indicating their contribution mainly to local cluster
structures (elemental variations within a geographic
origin), rather than global clustering (elemental varia-
tions between different countries of origin). Copper
concentrations (Figure 4h) are highest in Brazilian
samples, while Ga concentrations (Figure 4i) are
more elevated in Mozambique samples regardless
of species, consistent with previous observations
(Katsurada et al. 2019). Samples from Nigeria show

t-SNE Plots Coded by Element Abundance
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Figure 4: t-SNE plots of multielement data for Cu-bearing tourmaline are colour-coded by (a) geographic origin (from Figure 3d, for
reference), (b—d) major elements (Na, Ca and Li; on a linear scale) and (e—I) other major, minor and trace elements (Ti, Fe, Mn, Cu, Ga, Sr,
La and Pb; on a logarithmic scale). The colour gradients in plots b—I range from low (blue) to high (red) for the relative concentrations of
each element. These plots illustrate how specific elemental enrichments define geographic clusters and intra-origin subclusters.
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a distinctively higher Sr concentration (Figure 4j),
making it a useful discriminator for origin determina-
tion. As a representative rare-earth element, La (Figure
4k) shows a higher concentration (about 10 ppm) in a
small Brazilian subgroup, although it does not seem to
link to any specific deposit. A higher La concentration
occurs in the Maraca subgroup, which also shows a
similar trend as Ca and Mn (i.e. higher concentration
at the lower end of the cluster). Pb concentrations are
generally higher in samples from Maraca and Nigeria
(Figure 41), while lower levels occur in samples
from Mavuco and Brazil. Notably, a small subgroup
within the Mavuco group shows elevated Pb, but it
remains clustered with other Mavuco samples. This
suggests that a dimensionality-reduction method,
such as t-SNE, effectively captures overall geochem-
ical similarity by considering the entire elemental
profile, rather than individual elements in isolation,
thus demonstrating the robustness of the unsuper-
vised ML approach.

Fine Classification of Cu-Bearing
Tourmaline
In the t-SNE plot (Figure 5a), the Nigerian samples
form a tight, isolated cluster in the lower centre,
marked by elevated Sr and Ta concentrations. The
Maraca tourmaline group is defined by higher Li,
Ca, Sn and REE, along with moderate Ta concentra-
tions. Within the Maraca group, a smaller subgroup
enriched in Sc and V with moderate Fe occurs
towards the lower part of the cluster. Within the
Brazilian domain, several subclusters emerged.
One subcluster at the top of the t-SNE plot is
characterised by higher Ti, Mn and Fe concentra-
tions. Adjacent to it is a small Brazilian subgroup
with moderate REE (La—Tb) concentrations, while
another distinct subgroup contains lower Be and Bi
(see also Figure DD-4 in the data depository). Inter-
estingly, a similar low Be and Bi signature appears
in a Mozambican subgroup, but the two subgroups
remain clearly separated in the t-SNE plot due to
differences in other trace elements. A small Brazilian
subgroup with relatively high Cd, averaging 43 ppm
(compared to an average of 2.7 ppm in the rest of
the dataset), forms a discrete cluster in the bottom
centre; the exact deposit of origin for these samples
remains unknown. A few scattered data points near
the main Brazilian subcluster may be the result of
laser shots hitting inclusions, but they were labelled
as Brazilian samples since they originated from
reference material collected during the field trip.
The UMAP plot (Figure 5b) shows similar
substructures but presents a slightly different

spatial organisation due to the differing methodolo-
gies. Isolated subclusters—such as the Cd-bearing
Brazilian samples, as well as those from Nigeria and
Maraca—remain clearly defined. The high Ti-Mn-Fe
Brazilian cluster also appears, albeit as part of a
more connected substructure. Interestingly, UMAP
separates the Maraca subgroup into two distinct
clusters, whereas t-SNE presents them as a more
continuous distribution. This difference likely arises
from the different parameter sensitivities of the two
algorithms, but it also suggests the potential for even
finer classification within the Maraca samples (see
Figure DD-5 in the data depository).

Mapping of Sample Colours

To explore the relationship between sample colour
and elemental composition, we mapped the dominant
colours onto the same t-SNE and UMAP plots used
for elemental fingerprinting (Figure 6). Both plots
reveal that samples with similar colours tend to
cluster together, suggesting some correlation between
colour and elemental composition. For example, the
Brazilian cluster in the upper region of the t-SNE plot
is predominantly green and coincides with higher
concentrations of Ti, Mn and Fe. By contrast, two
green-dominant subgroups in the Mavuco (Mozam-
bique) region show only moderate Fe enrichment,
but higher Mn and Ti. In addition, a small subgroup
of green Maraca samples (bottom of the cluster) also
coincides with elevated Ti, Mn and Fe concentrations.
These observations confirm a previous finding that
the green colour of Cu-bearing tourmaline is related
to the presence of Ti, Mn and Fe in addition to Cu
(Laurs et al. 2008). However, elemental analysis must
be combined with spectroscopic studies to determine
whether one or a combination of elements is causing
the observed colour.

The purple hue of Cu-bearing tourmaline has been
attributed primarily to Mn3**. Various experiments
have indicated that heat treatment at about 500°C or
higher can reduce the purple hue, commonly resulting
in a more desirable ‘neon’ blue colour dominated by
Cu?*. As such, a purple tint generally indicates lack of
heat treatment. Interestingly, a comparison of Figures
4g and 6a reveals that the highest Mn concentrations
occur in green, rather than purple, samples. This
apparent discrepancy may be explained by differences
in Mn oxidation states. Specifically, the presence of
Mn?* and/or Mn?*~Ti*" intervalence charge transfer
(IVCT; Rossman & Mattson 1986), combined with
Cu?*, could contribute to the green colouration of these
tourmalines. However, because elemental analysis
by LA-ICP-TOF-MS does not distinguish oxidation

THE JOURNAL OF GEMMOLOGY, 39(8), 2025



FEATURE ARTICLE

t-SNE and UMAP Plots with Element Signatures
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Figure 5: (a) t-SNE and (b) UMAP
plots (from Figures 3d and 3e)
coloured by geographic origins
are labelled here with significant
elemental signatures. Ellipses
and annotations identify distinct
elemental subgroups within each
locality, revealing intra-origin
geochemical variations that are
consistent across both plots.
These diagrams illustrate that
fine classification of Cu-bearing
tourmalines can be explored
using non-linear ML methods.

@ Brazil
@ Mozambique (Mavuco)
@ Mozambique (Maraca)
@ Nigeria
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t-SNE and UMAP Plots Coded by Sample Colour

777777777777777777 Figure 6: (a) t-SNE and (b) UMAP plots
. 1 t-SNE (from Figures 3d and 3e) are coded

‘ here by primary sample colours (blue,
green or purple). In both plots, samples
with similar colours tend to cluster
together, suggesting some relationship
between colour and elemental
composition. However, the presence
of multiple subgroups per locality

(cf. Figure 5) may reflect multiple
deposits within a single geographic
region. The dashed box indicates the
area of the plot enlarged in Figure 7b.

-—— Figure 7b
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states, this interpretation remains speculative.

The presence of multiple ML subgroups per locality
raises the question of whether these subgroups reflect
multiple deposits within a single geographic region.
For instance, Brazil hosts several known Cu-bearing
tourmaline deposits, including Sdo José da Batalha,
Alto dos Quintos and the Mulungu mine. However,
examination of a single zoned multicoloured Brazilian
sample, described below, seems to suggest otherwise.

Colour and Composition Zoning in
Cu-bearing Tourmaline

We performed further analyses of a multicoloured
Cu-bearing tourmaline (reportedly from Sdo José
da Batalha, Brazil) from the 469-sample dataset to
demonstrate how t-SNE can be used to trace compo-
sitional and colour zoning within a single crystal.
The sample colours ranged from purple in the core
through blue to green at the rim, and 13 laser-abla-
tion spots were analysed across these colour zones
(Figure 7a). Spot 5 intersected an inclusion and
yielded a significantly higher Cs concentration (10
ppm) than the average (0.06 ppm) of other spots.
Similar Cs-rich phases have been reported in pink
tourmaline-bearing pegmatites in Lower Austria
(Walter et al. 2020), so this spot was considered an
outlier and omitted from further analysis.

Figure 7b shows an enlarged view of the Brazilian
cluster in the t-SNE plot (dashed box in Figure 6a)
with the positions of the multicoloured sample’s
analyses indicated. Interestingly, the purple, blue
and green colour zones of the sample corresponded
to three distinct subclusters of the Brazilian group
in the t-SNE plot. This corresponds to the link
between colour zoning and compositional variation
within tourmaline. However, despite these compo-
sitional differences, all data points from this sample
remained within the overall Brazilian cluster,
supporting the conclusion that they originated from
a single geographic origin.

This finding suggests that certain subgroups in the
t-SNE plot may reflect growth zoning within single
crystals or local variations within one mine rather than
distinct geographic deposits. Furthermore, because
this sample was unheated, as the purple core suggests,
the blue and green zones are likely also unmodified.
These natural variations provide a valuable reference
for distinguishing unheated and heat-treated samples.
Studying multicoloured tourmalines from confidently
known sources is essential to understand intra-crystal
zoning and refine origin assignments, and may
provide a compositional framework for identifying
heat treatment of Cu-bearing tourmaline.

Implications for Heat Treatment Detection
in Cu-bearing Tourmaline

The analysis of the multicoloured Brazilian sample
(Figure 7) may offer a promising new approach to
detect heat treatment in Cu-bearing tourmaline, comple-
mentary to conventional methods based on inclusions
and spectral features such as the Mn3* absorption
band (Laurs et al. 2008). Because the colours of the
sample’s zones are believed to be natural and are linked
to distinct clusters in the t-SNE plot, these clusters
can be interpreted as elemental signatures of unheated
material. For example, the purple core falls within a
specific cluster in the t-SNE map, but some of the other
samples in that cluster display a blue colour instead of

b Rim

Core

® Blue
® Green
® Purple

Spot 4 Spot 6

Figure 7: (a) An unheated multicoloured Cu-bearing tourmaline
sample from Brazil (reportedly from S&o José da Batalha) shows
distinct colour zoning, from purple in the core through blue to
green at the rim. The 13 analytical spots are marked. Spots 9 and
10 were measured on a fragment that detached during sample
handling (dashed outline in the photo). (b) An enlarged view of
the Brazilian cluster (dashed box in Figure 6a) shows the relative
positions of the 13 analysed spots (triangle symbols) within the
t-SNE plot. Spot 5 likely captured a Cs-bearing inclusion, so it
was omitted from data analysis. A comparison of Figures 6 and
7 shows that the observed subgroups in Figures 3—6 do not
necessarily correspond to different deposits.
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purple. This raises the possibility that those specimens
may have undergone heat treatment to reduce purple
and enhance blue colouration. Similarly, the lower
cluster in the t-SNE plot includes the blue zone of the
multicoloured sample. Other samples in this cluster are
also blue, which suggests that this cluster may represent
unheated blue tourmalines. These associations between
composition and colour provide a new framework for
flagging potential heat-treatment candidates.

This approach is especially valuable because
many Cu-bearing tourmalines are of high clarity
and lack inclusions that could provide evidence of
heat treatment. More work is needed to validate this
method, combining unsupervised ML with confi-
dently unheated reference samples to strengthen
the identification of treated stones. In addition, this
framework may complement established geochem-
ical indicators. For example, Okrusch et al. (2016)
proposed that blue Cu-bearing tourmalines with
CuO/MnO,,<0.5 may have undergone heat treatment
to reduce the reddish component associated with
Mn3*. Integrating such chemical ratios with ML-
derived clustering and colour zoning could enhance
the reliability of treatment detection.

CONCLUSIONS

This study demonstrates that combining full-spec-
trum elemental analysis via LA-ICP-TOF-MS with
unsupervised ML techniques offers a powerful and
objective approach to determining the geographic
origin of Cu-bearing tourmaline (e.g. Figure 8).
Unsupervised ML techniques such as t-SNE and
UMAP are more effective than traditional PCA in
resolving complex relationships within high-dimen-
sional multielement datasets.

Overall, mapping individual element distributions
by t-SNE provided a powerful visual tool for inter-
preting the geochemical drivers of sample clustering.
The element-specific overlays demonstrated that the
t-SNE clustering was not arbitrary; rather, it reflected
geochemical similarities across major, minor and trace
elements. By linking elevated elemental zones with
geographic clusters, we gained intuitive origin-specific
elemental fingerprints and an interpretable framework
for origin determination. Moreover, this technique may
provide insight into the geochemical evolution and
formation conditions of tourmaline deposits.

By combining t-SNE and UMAP (Figure 5), robust
non-linear ML could resolve not only major country-
of-origin groups but also intra-origin subclusters
defined by subtle elemental patterns. These subclus-
ters may reflect variations in geological conditions

Figure 8: An exceptional Paraiba tourmaline (about 5 ct) from
Brazil, set in a ring from the Asta Collection, Hong Kong, illustrates
gem-quality tourmaline for which origin determination is
important. Photo by SSEF.

during crystal growth (e.g. different mining sites
within a larger deposit area), and are of particular
interest for ongoing mineralogical research. For
example, the presence of relatively high-Cd Brazilian
samples suggests unique formation conditions that
require further investigation.

The ability of unsupervised ML algorithms to
reveal natural groupings without relying on pre-
assigned origin labels makes them particularly
valuable in gemmology, where origin information
is frequently uncertain and new sources continue to
emerge. Moreover, such unsupervised approaches
provide a crucial preliminary step before applying
downstream ML or Al methods, helping to refine the
dataset and augment the gemmologist’s decision-
making for geographic origin determination.

Beyond origin determination, unsupervised ML
potentially provides insight into a stone’s colour
zoning and growth history, paving the way for
more comprehensive gemmological investigations.
In particular, the integration of known unheated
reference samples into the workflows may support
the development of a new method for detecting heat
treatment in high-purity Cu-bearing tourmaline.

Overall, this study highlights the transformative
potential of unsupervised ML in gem research and
testing. It lays the foundation for more accurate,
data-driven classification systems that can adapt to
the evolving complexity of the global gem market.
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