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ABSTRACT: Determining the geographic origin of Cu-bearing tourmaline poses a significant challenge 
in gemmology, particularly when traditional microscopic methods yield inconclusive results. This 
study applies a combined analytical and computational approach using 469 gem-quality samples 
from Brazil, Mozambique and Nigeria. A total of 57 elements (from Li to U) were quantified using 
full-mass-spectrum LA-ICP-TOF-MS. The high-dimensional elemental dataset was reduced to 
interpretable 2D maps using non-linear unsupervised machine-learning algorithms, including 
t-distributed stochastic neighbour embedding (t-SNE) and uniform manifold approximation and 
projection (UMAP). These methods successfully identified complex patterns and distinct subgroups, 
revealing compositional similarities not captured by traditional linear approaches. The resulting 
clusters provided a clear framework for geographic origin determination of unknown samples. 
Elemental signatures of key elements (i.e. Na, Ca, Li, Ti, Fe, Mn, Cu, Ga, Sr, La and Pb) highlighted 
their influence on clustering and related geochemical variations to colour and geographic origin. 
Unsupervised machine-learning algorithms do not rely on predefined origin labels. This reduces 
errors caused by uncertain origin information and helps reveal statistical outliers that may point to 
new or undocumented sources. By integrating colour information with compositional clustering, the 
method also provides a possible framework for identifying heat treatment in high-clarity stones.
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C
opper-bearing tourmalines (i.e. fluor-elbaite 
and fluor-liddicoatite) are beautiful and  
fascinating members of the tourmaline 
family. First recognised in the late 1980s 

in Paraíba State, Brazil (Koivula & Kammerling 
1989; Fritsch et al. 1990; Henn et al. 1990), these 
gems display colours distinct from those of other 
tourmalines, with hues that range from vivid blue—
known in the trade as ‘neon’ or ‘electric’ blue—to green 
and purple. Major, minor and trace amounts of Cu 
and Mn are responsible for their intense colouration. 
Structurally, these tourmalines accommodate Cu 
substitution at the distorted octahedral Y-site, which 
generates characteristic Cu-related absorption bands 

in the 700–900 nm spectral region (Henn et al. 1990).
Following the earlier discoveries in Brazil, 

additional Cu-bearing tourmaline deposits were 
identified in 2001 in the Edeko area of Nigeria 
(Smith et al. 2001; Zang et al. 2001). Later, in 2004, 
discoveries in the Mavuco region of north-eastern 
Mozambique further expanded the known geographic 
and geochemical range of these rare tourmalines 
(Wentzell 2004; Abduriyim & Kitawaki 2005; Laurs 
et al. 2008). More recently, another alluvial deposit 
of Cu-bearing tourmaline was reported in the Maraca 
region of Mozambique, about 20 km from Mavuco 
(Karampelas & Klemm 2010; Milisenda & Müller 
2017). As is common practice in the trade, Cu-bearing 
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tourmalines from all these geographic origins may 
be called ‘Paraíba tourmaline’, which refers to the 
Brazilian locality of Paraíba where this tourmaline 
variety was first mined (LMHC 2023). However, 
specimens of ‘neon’ blue colour from Brazil remain 
the benchmark in the trade, in part for their beauty 
and rarity, but mostly because they link to the histor-
ical discovery of this gem. 

Although the geographic origin of Cu-bearing 
tourmaline is a critical factor influencing its market 
value, this determination remains a challenge 
for gemmological laboratories. Due to their high 
clarity and diverse colours (Figure 1), traditional 
methods (such as spectroscopic analysis and micro-
scopic examination of inclusions) are increasingly 
being complemented by advanced techniques such 
as laser ablation inductively coupled plasma mass 
spectrometry (LA-ICP-MS), which produces detailed 
elemental data that can reveal subtle geochemical 
differences helpful for distinguishing geographic 
origin (Abduriyim et al. 2006; Katsurada et al. 2019).

Recent advancements in machine learning (ML), 
a subdomain of artificial intelligence (AI; see Box 
A), have introduced new strategies for analysing 
complex datasets, improving the consistency and 
accuracy of gemstone origin determination. To our 
knowledge, the first scientific application of ML 
for identifying the geographic origin of gemstones 
was done by Dereppe et al. (2000), who explored 
artificial neural networks to classify emeralds from 
various origins. Since then, most studies of ML 
applied to gem materials have focused on techniques 
that employ models such as deep learning (Chow & 
Reyes-Aldasoro 2021; Bendinelli et al. 2024), artifi-
cial neural networks, random forests and support 
vector machines (Chow & Reyes-Aldasoro 2021; 
Hardman et al. 2024; Seneewong-Na-Ayutthaya et 
al. 2025), and partial least squares regression (Dutrow 
et al. 2024). All these supervised ML methods (see 
Box A) require large datasets confidently labelled 

with origin information. In gemmology, assembling 
such datasets is challenging because gem production 
is dynamic. New deposits are continuously discov-
ered, and artisanal or small-scale mining operations 
typically lack the rigorous documentation required 
to establish a definitive chain of custody. Even in 
well-studied deposits, geochemical variability can 
blur the boundaries of origin, leaving some identifi-
cations to be based more on expert judgment than on 
unequivocal data (Giuliani & Groat 2019).

To address these limitations, we previously intro-
duced and explored an unsupervised ML workflow 
for gemstone origin determination (Wang & Krzem-
nicki 2021; Krzemnicki et al. 2024). Unlike supervised 
methods, unsupervised ML does not require labelling of 
data with geographic origin before calculation (again, 
see Box A); instead, it identifies similarities in chemical 
composition. Most gems analysed in a lab were not 
collected in situ, so origin information is typically 
inferred from trusted sources, which may be subjec-
tive. In contrast, elemental data is obtained through 
objective analytical methods, such as LA-ICP-MS.

LA-ICP-MS can quantify more than 50 elements, 
but the resulting high-dimensional dataset (that 
is, with a large number of variables) is difficult 
for humans to interpret directly. Dimensionality- 
reduction techniques, such as t-distributed stochastic 
neighbour embedding (t-SNE; van der Maaten & 
Hinton 2008), allow effective projection of high- 
dimensional data into a lower-dimensional space 
without a priori labelled data (Wang & Krzemnicki 
2021). In the present study, we expand our previous 
approach by incorporating an additional unsupervised 
ML technique—uniform manifold approximation and 
projection (UMAP; McInnes et al. 2018; Healy & 
McInnes 2024)—to further investigate the inherent 
geochemical signatures of Cu-bearing tourmaline. 
The goals of this approach were to detect subtle 
clustering patterns and to refine the classification of 
geographic origin.

Figure 1: These Cu-bearing tourmalines (2–20 
ct) are representative of the samples analysed 
in this study. They are all from Brazil except 
for the purple specimen on the right, which 
originates from Mavuco, Mozambique. The 
individual images are scaled to similar visual 
size for comparison, and to illustrate the 
typical colour range of Cu-bearing tourmaline. 
Composite photo by H. A. O. Wang and Julien 
Xaysongkham, SSEF.
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BOX A: ARTIFICIAL INTELLIGENCE VS MACHINE LEARNING  
(SUPERVISED AND UNSUPERVISED APPROACHES)

Artificial intelligence (AI) refers to a broad field 
focused on designing and developing computer 
systems that can perform certain tasks which 
have typically required human intelligence. The 
foundations of AI research were laid by English 
mathematician Alan Turing (Turing 1950). A few 
years later, the term was coined by John McCarthy 
in a proposal for a workshop at Dartmouth College 
(McCarthy et al. 1955). AI tasks include reasoning 
through complex situations, understanding natural 
language (i.e. human language in the context of AI) 
and making decisions under uncertainty. 

Machine learning (ML) is a specialised 
subfield of AI. Rather than relying on explicitly 
programmed instructions, ML enables computers 
to learn patterns and relationships directly from 
data. By repeatedly being exposed to examples, 
such as elemental compositions of gems with or 
without their geographic origin labels, ML models 
can identify statistical patterns that allow them 
to classify, predict or group data based on input 
data. For instance, given trace-element data, an 
ML model might learn to distinguish between 
gems from different geographic origins (e.g. 
Dereppe  et al. 2000; Bendinelli et al. 2024; Senee-
wong-Na-Ayutthaya  et al. 2025).

ML algorithms typically fall into three types:

Supervised learning. A model is trained on 
labelled examples, connecting input (e.g. 
elemental composition) to known output (e.g. 
geographic origin). The input is normally split 
into training, validation and testing datasets. 

Unsupervised learning. A model examines 
unlabelled data to uncover inherent patterns, 
clusters or anomalies. It can group stones 
by elemental similarity or identify unusual 
specimens as outliers.

Reinforcement learning. An agent—an 
autonomous decision-making entity typi- 
cally implemented using one or more models—
learns optimal strategies by interacting with an 
environment and receiving rewards. Although 
less common in gemmology today, it holds 
potential for applications such as automated 
grading or robotic sample handling.

When choosing between supervised and 
unsupervised ML approaches, it is important 
to consider the strengths and limitations of 
each method. Supervised ML relies on labelled 
datasets, such as known geographic origins, and 
is highly effective when accurate, comprehensive 
ground-truth information is available. However, 
in gemmology, origin labels are often difficult to 
verify and may be based on subjective or incom-
plete information. Mislabelled data can introduce 
errors during model training, reducing the relia-
bility of geographic origin determinations.

Unsupervised ML, by contrast, does not 
require pre-assigned labels. Instead, it identifies 
clusters and patterns based solely on the intrinsic 
structure of the data. This makes unsupervised 
methods preferable when such ground truth is 
either unavailable or unreliable. Unsupervised 
approaches also can serve as an exploratory 
step before applying supervised models. By 
revealing the underlying structure of the data 
and minimising bias from potentially unreliable 
labels, unsupervised methods help refine datasets 
and improve the output quality of subsequent 
ML methods.

In gemmology, AI and ML are transforming 
traditional workflows by augmenting, rather than 
replacing, the role of expert gemmologists (Wang 
& Krzemnicki 2021; Seneewong-Na-Ayutthaya et 
al. 2025). These tools serve as powerful assistants: 
rapidly processing large datasets, highlighting 
outliers or anomalies, and uncovering hidden 
patterns that may not be immediately evident. This 
human-machine collaborative approach enhances 
both efficiency and accuracy, allowing gemmol-
ogists to focus on higher-level interpretation and 
decision making, effectively acting as supervisors 
of the data-driven process. 

Understanding the distinction between AI’s 
broad, goal-oriented applications and ML’s 
more focused, data-driven methodologies will 
allow gemmologists and researchers to choose 
the most suitable tools for specific tasks such 
as origin determination, quality grading and 
treatment detection. It will also help prevent 
the misuse or overstatement of terminology, 
such as the tendency to label basic statistical 
analyses as ‘AI’.

1. 

2. 

3. 
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MATERIALS AND METHODS

Samples
The study comprised analyses of 469 gem-quality 
Cu-bearing tourmalines (Table I). The samples were 
obtained from several reliable sources, including the 
SSEF reference collection, the collection of Prof. 
Dr Henry A. Hänni, reputable clients and mining 
companies, and samples with origin labelling confi-
dently determined by gemmologists. Most of the 
specimens were fluor-elbaite (hereafter, simply 
elbaite), a Na-rich tourmaline with the general 
formula Na(Li1.5Al1.5)Al6Si6O18(BO3)3(OH)3(F), 
from deposits in the Paraíba and Rio Grande 
do Norte states of Brazil, the Mavuco region of 
Mozambique and the Edeko region of Nigeria. 
Also included were Ca-rich tourmaline samples 
of the fluor-liddicoatite species (hereafter, simply 
liddicoatite), with the general formula Ca(Li2Al)
Al6Si6O18(BO3)3(OH)3(F), from the Maraca region 
of Mozambique. All samples, either faceted or 
rough, had at least one polished surface to minimise 
contamination during laser ablation inductively 
coupled plasma time-of-flight mass spectrometry 
(LA-ICP-TOF-MS) analysis.

The samples spanned a wide range of colours, 
mainly blue to green and purple, with various 
saturation levels. For simplicity, colours were 
categorised by main hue—blue, green and 

purple—using standardised illumination at 4500 K. 
Some of the samples used in this study had 
undergone heat treatment (disclosed and undis-
closed), a common practice used to reduce the purple 
hue and enhance blue colouration in Cu-bearing 
tourmaline (Abduriyim et al. 2006). Although heat- 
treatment detection was not the primary focus of 
this study, the methodology presented also offers 
a promising new direction for identifying heat 
treatment in this type of tourmaline.

LA-ICP-TOF-MS Analysis
As outlined in Figure 2, analyses were conducted 
using a 193 nm ArF excimer laser-ablation system 
(NWR193UC, ESI, USA) coupled to an ICP-TOF-MS 

Table I: Summary of the 469 Cu-bearing tourmaline samples  
analysed in this study.

* Includes 71 samples collected during a field trip in 2017 to the 	
	 São José da Batalha, Mulungu and Alto dos Quintos mines  
	 (Klumb 2018).

Geographic 
origin

No. 
samples

Weight  
range (ct)

Dominant 
hues

Brazil 253* Melee–102.8 Blue, green, purple

Mozambique 
(Mavuco) 129 0.6–73.0 Blue, green, purple

Mozambique 
(Maraca) 72 0.9–37.8 Blue, green

Nigeria 15 0.6–61.3 Blue, green, purple
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Figure 2: A schematic workflow illustrates the procedure using unsupervised ML to determine the geographic origin of an unknown 
sample. LA-ICP-TOF-MS measurements generate multielement data, which are projected in 2D/3D space using algorithms such as t-SNE 
and UMAP. The resulting low-dimensional plots are then coloured according to geographic origin or other attributes, such as elemental 
concentration or sample colour, to reveal compositional relationships. Finally, a gemmologist compares the composition of an unknown 
sample to the reference data to give an opinion on its geographic origin. 
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(icpTOF R, Tofwerk AG, Switzerland). The instru-
ment was tuned daily to simultaneously measure 
from 7Li+ to 238U+, achieving a mass resolving 
power of approximately 3,000 at 238U+. Each sample 
was ablated in hole-drilling mode on three to four 
inclusion-free spots. The laser spot was 100 µm in 
diameter for the samples and 75 µm for the standard 
reference materials (SRMs). Each position received 
600 laser shots at 20 Hz and about 5.6 J/cm² fluence. 
Helium was used as the carrier gas to transport the 
aerosol into the plasma. Five pre-cleaning shots 
were applied at each position to remove surface 
contaminants. 

Because no suitable matrix-matched tourmaline 
standard exists for the full suite of trace elements 
of interest, we employed a dual-SRM calibration 
using NIST 610 and NIST 612 glasses for external 
calibration. Each SRM was measured before and 
after the unknowns to monitor instrument drift. 
Quantification was performed using 29Si+ as the 
internal standard, followed by total mass normali-
sation to account for matrix effects (Guillong et al. 
2005). If the concentration of a given element fell 
below its detection limit, the value was replaced 
with a random number drawn from the log-normal 
distribution of detection limits for that element 
across all analyses. Further details of this approach 
are provided in Wang and Krzemnicki (2021). The 
dataset comprised Cu-bearing tourmaline analyses 
collected over a five-year period.

Unsupervised Machine Learning
Following quantification of 57 elements, to explore 
the complex multielement dataset and identify 
natural clusters and compositional similarities among 
samples, we used two unsupervised ML algorithms: 
t-SNE and UMAP. All computational analyses were 
conducted using Python software (version 3.11.9) on 
a laptop with an Intel i7 central processing unit. We 
then generated two-dimensional (2D) scatterplots, and 
geographic-origin information was colour coded and 
overlaid on the plots. The same approach was used to 
examine correlations between elemental concentra-
tions and the dominant hues of the samples.

Because it was not possible to obtain confident 
provenance information for every specimen, the study 
included both reference samples of known origin and 
samples of originally unknown origin. The former—
those collected in the field or provided by verified 
sources—served as reference anchors in the unsuper-
vised ML embedding. Once clusters were defined 
based on their multielement similarities, unknown 
samples could be positioned relative to these reference 

clusters. If an unknown sample consistently plotted 
within a cluster defined by reference material from 
a specific locality, its geographic origin was then 
inferred. 
 
t-SNE. A detailed explanation of the t-SNE algorithm 
is provided in Box B. In this study, t-SNE was imple-
mented using the scikit-learn package, version 1.5.1 
(Pedregosa et al. 2011), to reduce the dimension-
ality of the multielement dataset to two dimensions. 
Before analysis, the elemental concentration dataset 
was log-transformed to reduce skew and compress 
the dynamic range. The t-SNE algorithm was config-
ured with an ‘seuclidean’ distance metric, a learning 
rate of 100, a maximum of 5,000 iterations and 
operation in ‘exact’ mode for enhanced accuracy. 
An exaggeration factor of 30 was applied at the 
beginning of the optimisation process to enhance 
cluster separation. Each calculation round took about 
three minutes.

We tested a range of perplexity values (10–200; 
see Box B) to optimise the balance between local and 
global structure preservation (Figure DD-1 in The 
Journal’s online data depository). Local structure 
refers to relationships among nearby data points—
samples with similar compositions that remain close 
together statistically. Global structure describes the 
overall arrangement of all clusters in a dataset. Based 
on the selection of a perplexity of 30, the resulting 
2D coordinates were visualised as scatterplots. 
Although 3D projections offered better subgroup 
separation when interactively viewed, 2D plots 
were chosen for publication due to their simplicity 
and clarity.

UMAP. As an alternative method to t-SNE, we 
employed UMAP (see Box C) for dimension 
reduction. Using the umap-learn package (version 
0.5.7; McInnes et al. 2018), we projected the high- 
dimensional elemental dataset into 2D space to better 
visualise complex inter-sample relationships. As with 
t-SNE, the dataset was first log-transformed. The 
UMAP analysis was then configured with a Euclidean 
distance metric. Each calculation round took less than 
one minute. We explored a minimum distance (DIST) 
of 0.1–0.99 and a variable number (10–200) of nearest 
neighbours (NN) to find a suitable clustering pattern 
that balanced the global and local structures (see 
Figure DD-2 in the data depository for comparison). 
We chose DIST = 0.5 and NN = 30 to efficiently 
capture both local and global data structures, forming 
a robust method for subsequent cluster analyses and 
comparisons with t-SNE outcomes.
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BOX B: t-DISTRIBUTED STOCHASTIC NEIGHBOUR EMBEDDING (t-SNE) 

RESULTS AND DISCUSSION

Comparison of Different Methods  
of Data Analysis 
To assess the effectiveness of various data-separa-
tion and dimensionality-reduction techniques for 
determining the geographic origin of Cu-bearing 
tourmaline, we applied four approaches to the same 
57-element dataset: bivariate scatterplots, principal 
component analysis (PCA), t-SNE and UMAP. In 
each case, the resulting 2D scatterplots were colour 
coded after calculation using known geographic 
origins—Brazil, Mozambique (Mavuco and Maraca) 

and Nigeria—to independently evaluate the clustering 
performance of pre-assigned labels. 

Bivariate Scatterplots. We began with traditional 
two-element scatterplots, such as Cu vs Ga (Figure 
3a). Brazilian samples showed higher Cu and lower 
Ga concentrations, while Maraca and Mavuco samples 
exhibited higher Ga. Nigerian tourmalines displayed 
broad variability in Cu but were confined to a narrow 
Ga range. Despite these trends, overlap among regions 
was significant. Thus, such plots offer limited discrim-
ination. Evaluating additional element pairs becomes 
unwieldy as the number of elements increases.

t-SNE is an unsupervised ML technique used 
to visualise complex high-dimensional datasets 
in two or three dimensions. In gemmology, it is 
particularly useful for interpreting multielement 
chemical data, such as the elemental fingerprints 
of gem materials. Each measured element in a 
gem represents one dimension in the dataset. 
With dozens of elements per sample, the resulting 
data exist in a high-dimensional space that can be 
difficult to interpret visually. The t-SNE method 
helps by projecting this high-dimensional structure 
into a lower-dimensional space, typically two 
dimensions, while preserving the relationships 
between samples as faithfully as possible (van der 
Maaten & Hinton 2008). Additional resources for 
explaining the t-SNE algorithm include Watten-
berg et al. (2016) and Kemal (2020). Numerous 
dimensionality-reduction techniques exist in 
addition to t-SNE. Readers interested in a broader 
overview are encouraged to consult comparative 
review papers on these methods (van der Maaten 
et al. 2009; Wani 2025). The authors evaluated 
several methods and found that t-SNE and UMAP 
performed best for the Cu-bearing tourmaline 
dataset used in this study. 

The process starts by measuring how similar 
each analysis (or data point in the plot) is to every 
other analysis based on their elemental compo-
sitions. These similarities are converted into 
probabilities. Next, t-SNE maps these points into 
two dimensions, again using probabilities, but now 
derived from a special statistical function called 
the t-distribution. This distribution is particularly 
useful because it has heavier tails compared to the 
standard Gaussian distribution, meaning it better 

handles points that are far apart, thus clearly 
separating different clusters. Note that the axes 
in t-SNE plots have no physical or composi-
tional meaning; only the relative distances and 
spatial relationships between data points are 
interpretable.

The critical step for t-SNE is to ensure these 
probabilities from the simplified two-dimensional 
map closely reflect those from the original high- 
dimensional dataset. To accomplish this, t-SNE 
uses a mathematical measure called Kullback- 
Leibler (KL) divergence (Kullback & Leibler 1951). 
By minimising KL divergence, the algorithm ensures 
that points close together in the original high-dimen-
sional space remain close in the simpler 2D map, 
while dissimilar points are clearly separated.

A key parameter in t-SNE is perplexity (Figure 
DD-1), which represents how many neighbours 
surround each data point (i.e. its statistically 
similar neighbours). A lower perplexity tends to 
focus on local structure, potentially leading to 
the breakup of global clusters and the appearance 
of many small, tightly packed groups. A higher 
perplexity considers more neighbours, which 
can provide a better representation of the global 
structure of the data, potentially resulting in more 
cohesive and broader clusters. However, very 
high perplexity values might blur local details.

While t-SNE excels at revealing hidden clusters 
and patterns, it is a non-deterministic method, 
meaning repeated runs may produce slightly 
different layouts. For more details, refer to the 
original description of t-SNE (van der Maaten & 
Hinton 2008) or visit https://scikit-learn.org/stable/
modules/generated/sklearn.manifold.TSNE.html.

https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html
https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html
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Component Analysis. We applied PCA using 
MATLAB 2018b software to explore multivariate 
relationships within the dataset. In this approach, the 
Z-score standardised dataset was mathematically 
transformed into a new set of orthogonal axes, known 
as principal components. Each principal component 
represents a linear combination of the original 
variables and is ordered according to the amount of 
variance it explains. This transformation reduced 
the dimensionality of the dataset while retaining as 
much of the original variability as possible, allowing 
the dominant geochemical trends to be visualised 
and interpreted more effectively than the bivariate 
scatterplots.

As shown in Figure 3b, PCA effectively separated 
the Maraca (Mozambique) samples, which are 
liddicoatite, from the others (elbaite) due to their 
distinctly greater Ca, Li and rare-earth element (REE) 
contents. However, among the elbaite tourmalines, 
PCA showed substantial overlap, limiting its ability 
to resolve subtle geochemical differences. This 
behaviour reflects a common limitation of PCA when 

datasets are dominated by compositional gradients. 
The first two principal components (PC1 and PC2) 
are mainly driven by high-variance elements that 
separate liddicoatite from elbaite. Consequently, trace 
elements such as Cu and Ga contribute little to these 
components, limiting their discriminating power. To 
uncover these more subtle geochemical relationships, 
we performed a separate PCA restricted to elbaite 
samples (Figure DD-3 in the data depository), but 
overlaps between different geographic origins were 
still significant.

Machine-learning Methods. The unsupervised 
ML algorithms t-SNE and UMAP are non-linear 
and produced more nuanced and informative plots 
(Figures 3c–e). Critically, neither algorithm used 
geographic-origin labels during computation (Figure 
3c). They were only added afterwards, ensuring an 
unbiased clustering result. Compared to PCA and 
bivariate plots, t-SNE (Figure 3d) and UMAP (Figure 
3e) not only offered separation between elbaite and 
liddicoatite samples, but also significantly improved 

BOX C: UNIFORM MANIFOLD APPROXIMATION AND PROJECTION (UMAP)

UMAP is another unsupervised ML technique that 
can simplify high-dimensional data. Like t-SNE, 
it is designed to visualise complex multi-dimen-
sional datasets and uncover hidden patterns. UMAP 
assumes that the data lie on a continuous, non-linear 
surface (called a manifold) and aims to reconstruct 
the structure of this manifold in fewer dimensions 
without losing important relationships. The process 
starts by building a graph (or network) of the 
high-dimensional dataset by identifying the nearest 
neighbours for each data point and quantifying how 
strongly they are connected. The resulting ‘fuzzy’ 
graph captures the local structure of the data. In the 
second step, UMAP optimises a low-dimensional 
layout that preserves these relationships as closely 
as possible (McInnes et al. 2018).

UMAP typically runs faster and handles large 
datasets more efficiently than t-SNE, making it better 
suited for extensive data analysis (McInnes et al. 
2018). However, t-SNE generally excels at capturing 
fine local details, while UMAP maintains a balance 
between preserving local and global relationships, 
providing a more comprehensive view of the data’s 
organisation. UMAP tends to be less sensitive to 
parameter choices than t-SNE, yielding consistent 
results with minimal fine tuning. For gemmological 

applications, a good practice is to use both methods: 
first use UMAP as a fast screening to quickly search 
for broader global layouts, and then use t-SNE to 
enhance the local data structures. 

UMAP also includes user-defined parameters 
such as: number of nearest neighbours to control 
how local the analysis is (smaller values emphasise 
fine-grained clustering and larger values capture 
broader patterns); minimum distance to affect how 
tightly points are packed together in the reduced 
space (lower values lead to denser clusters); 
and distance metric to define how distances are 
measured in the high-dimensional (e.g. Euclidean) 
space (Figure DD-2). 

In gem research, UMAP can be especially 
useful for revealing patterns among chemically 
similar samples, identifying outliers in the data 
and distinguishing subtle differences in multi-
element fingerprints. Because it does not require 
origin labels, it is ideal for exploring unlabelled 
or partially labelled datasets, and can serve as 
a valuable first step before applying supervised 
learning or manual classification. UMAP offers a 
complementary approach to t-SNE to cross-val-
idate data visualisation. For more details about 
UMAP, visit https://umap-learn.readthedocs.io/en.

https://umap-learn.readthedocs.io/en
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Figure 3: Four data-reduction methods were applied to the 57-element dataset of Cu-bearing tourmalines from Brazil, Mozambique 
(Mavuco and Maraca) and Nigeria, for comparison: (a) Cu vs Ga bivariate scatterplot; (b) plot of PCA scores; (c) unlabelled t-SNE plot;  
(d) t-SNE plot colour-coded by origin; and (e) UMAP projection colour-coded by origin. Both of the non-linear methods (d, e) provide 
clearer separation of geographic groups and intra-origin subclusters than the linear approaches (a, b). Note that the axes in the t-SNE  
and UMAP plots have no inherent meaning; only the relative distances and groupings of points carry interpretive value.
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clustering among samples from Brazil, Mozambique 
and Nigeria.

Notably, both methods also revealed subclus-
tering of data within Brazil and Mozambique 
origins (Figures 3d, e). Brazilian samples split into 
more than two distinct subgroups, and Mavuco and 
Maraca samples divided into two subgroups. While 
more subgroups may be revealed by tuning algorithm 
parameters, over-segmentation might reflect experi-
mental variation rather than true chemical differences 
of geological significance.

Although UMAP appears to produce tighter and 
more distinct subgroups than t-SNE, this may be 
due to specific parameter settings of the algorithms. 
Therefore, we recommend a combined workflow 
in which both t-SNE and UMAP are applied to the 
multielement dataset, showing different capabilities 
in global and local clustering to (1) cross-validate 
emergent clusters, (2) identify geographic origin and 
intra-origin substructures, and (3) detect anomalous 
points that may need further investigation.

In addition, new reference samples with well-doc-
umented geographic origins should be regularly 
analysed to validate existing cluster labels. If newly 
analysed samples form separate clusters, this may 
suggest the presence of previously unrecognised 
clusters or, potentially, new deposits, either due to 
delayed reporting of new finds or, in rare cases, 
intentional concealment of source information. 
This dual-method approach can increase confidence 
in origin assignments and support the continuous 
development of a robust, automated, supervised ML 
classification system for gemmological laboratories.

Elemental Signature Visualisation
In order to highlight how specific elements contribute 
to the cluster separation of specific geographic origins, 
the relative concentrations of selected elements are 
represented as ‘heat maps’ on the t-SNE-generated 
scatterplot (Figure 4). (While this is shown here only 
for t-SNE, the same can be done with UMAP.) Each 
data point was coloured according to its relative 
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concentration for a given element, from deep blue 
(low concentration) to deep red (high concentration). 
These colour gradients were normalised independently 
for each element, so they reflect relative variations 
within an element across the dataset, but they do not 
allow direct comparison between different elements. 
The corresponding concentration ranges for these 
elements are summarised in Table DD-I in the data 
depository.

Sodium dominates the elbaite tourmaline clusters 
(i.e. Brazil, Nigeria and Mavuco [Mozambique]; 
Figure 4b), as expected from elbaite’s composition 
(Na-Li tourmaline). The Ca and Li concentrations 
peak sharply in the Maraca (Mozambique) cluster, 
consistent with the presence of liddicoatite (Ca-Li 
tourmaline; Figure 4c, d). Within the Maraca cluster, 
Ca exhibits a clear gradient, where samples at the 
lower end of the plot have more Ca than at the upper 
end. This effect is difficult to interpret because the 
stones from Maraca are from an alluvial deposit, so 

no reliable geological context information is available 
(Katsurada & Sun 2017). By contrast, Na-rich elbaite 
samples show less origin-related differentiation based 
on Na content alone, indicating that other elements are 
needed to resolve subgroups in the elbaite population.

Figures 4e–4l show additional major, minor and 
trace elements (Ti, Fe, Mn, Cu, Ga, Sr, La and Pb) 
on a logarithmic scale, reflecting their wide dynamic 
range. The elements Ti (Figure 4e), Fe (Figure 4f) 
and Mn (Figure 4g) show pronounced concentration 
differences within each geographic-origin group, 
indicating their contribution mainly to local cluster 
structures (elemental variations within a geographic 
origin), rather than global clustering (elemental varia-
tions between different countries of origin). Copper 
concentrations (Figure 4h) are highest in Brazilian 
samples, while Ga concentrations (Figure 4i) are 
more elevated in Mozambique samples regardless 
of species, consistent with previous observations 
(Katsurada et al. 2019). Samples from Nigeria show 

t-SNE Plots Coded by Element Abundance
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Figure 4: t-SNE plots of multielement data for Cu-bearing tourmaline are colour-coded by (a) geographic origin (from Figure 3d, for 
reference), (b–d) major elements (Na, Ca and Li; on a linear scale) and (e–l) other major, minor and trace elements (Ti, Fe, Mn, Cu, Ga, Sr, 
La and Pb; on a logarithmic scale). The colour gradients in plots b–l range from low (blue) to high (red) for the relative concentrations of 
each element. These plots illustrate how specific elemental enrichments define geographic clusters and intra-origin subclusters.
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a distinctively higher Sr concentration (Figure 4j), 
making it a useful discriminator for origin determina-
tion. As a representative rare-earth element, La (Figure 
4k) shows a higher concentration (about 10 ppm) in a 
small Brazilian subgroup, although it does not seem to 
link to any specific deposit. A higher La concentration 
occurs in the Maraca subgroup, which also shows a 
similar trend as Ca and Mn (i.e. higher concentration 
at the lower end of the cluster). Pb concentrations are 
generally higher in samples from Maraca and Nigeria 
(Figure 4l), while lower levels occur in samples 
from Mavuco and Brazil. Notably, a small subgroup 
within the Mavuco group shows elevated Pb, but it 
remains clustered with other Mavuco samples. This 
suggests that a dimensionality-reduction method, 
such as t-SNE, effectively captures overall geochem-
ical similarity by considering the entire elemental 
profile, rather than individual elements in isolation, 
thus demonstrating the robustness of the unsuper-
vised ML approach.

Fine Classification of Cu-Bearing 
Tourmaline
In the t-SNE plot (Figure 5a), the Nigerian samples 
form a tight, isolated cluster in the lower centre, 
marked by elevated Sr and Ta concentrations. The 
Maraca tourmaline group is defined by higher Li, 
Ca, Sn and REE, along with moderate Ta concentra-
tions. Within the Maraca group, a smaller subgroup 
enriched in Sc and V with moderate Fe occurs 
towards the lower part of the cluster. Within the 
Brazilian domain, several subclusters emerged. 
One subcluster at the top of the t-SNE plot is 
characterised by higher Ti, Mn and Fe concentra-
tions. Adjacent to it is a small Brazilian subgroup 
with moderate REE (La–Tb) concentrations, while 
another distinct subgroup contains lower Be and Bi 
(see also Figure DD-4 in the data depository). Inter-
estingly, a similar low Be and Bi signature appears 
in a Mozambican subgroup, but the two subgroups 
remain clearly separated in the t-SNE plot due to 
differences in other trace elements. A small Brazilian 
subgroup with relatively high Cd, averaging 43 ppm 
(compared to an average of 2.7 ppm in the rest of 
the dataset), forms a discrete cluster in the bottom 
centre; the exact deposit of origin for these samples 
remains unknown. A few scattered data points near 
the main Brazilian subcluster may be the result of 
laser shots hitting inclusions, but they were labelled 
as Brazilian samples since they originated from 
reference material collected during the field trip.

The UMAP plot (Figure 5b) shows similar 
substructures but presents a slightly different 

spatial organisation due to the differing methodolo-
gies. Isolated subclusters—such as the Cd-bearing 
Brazilian samples, as well as those from Nigeria and 
Maraca—remain clearly defined. The high Ti-Mn-Fe 
Brazilian cluster also appears, albeit as part of a 
more connected substructure. Interestingly, UMAP 
separates the Maraca subgroup into two distinct 
clusters, whereas t-SNE presents them as a more 
continuous distribution. This difference likely arises 
from the different parameter sensitivities of the two 
algorithms, but it also suggests the potential for even 
finer classification within the Maraca samples (see 
Figure DD-5 in the data depository). 

Mapping of Sample Colours
To explore the relationship between sample colour 
and elemental composition, we mapped the dominant 
colours onto the same t-SNE and UMAP plots used 
for elemental fingerprinting (Figure 6). Both plots 
reveal that samples with similar colours tend to 
cluster together, suggesting some correlation between 
colour and elemental composition. For example, the 
Brazilian cluster in the upper region of the t-SNE plot 
is predominantly green and coincides with higher 
concentrations of Ti, Mn and Fe. By contrast, two 
green-dominant subgroups in the Mavuco (Mozam-
bique) region show only moderate Fe enrichment, 
but higher Mn and Ti. In addition, a small subgroup 
of green Maraca samples (bottom of the cluster) also 
coincides with elevated Ti, Mn and Fe concentrations. 
These observations confirm a previous finding that 
the green colour of Cu-bearing tourmaline is related 
to the presence of Ti, Mn and Fe in addition to Cu 
(Laurs et al. 2008). However, elemental analysis must 
be combined with spectroscopic studies to determine 
whether one or a combination of elements is causing 
the observed colour.

The purple hue of Cu-bearing tourmaline has been 
attributed primarily to Mn³+. Various experiments 
have indicated that heat treatment at about 500°C or 
higher can reduce the purple hue, commonly resulting 
in a more desirable ‘neon’ blue colour dominated by 
Cu²+. As such, a purple tint generally indicates lack of 
heat treatment. Interestingly, a comparison of Figures 
4g and 6a reveals that the highest Mn concentrations 
occur in green, rather than purple, samples. This 
apparent discrepancy may be explained by differences 
in Mn oxidation states. Specifically, the presence of 
Mn2+ and/or Mn2+–Ti4+ intervalence charge transfer 
(IVCT; Rossman & Mattson 1986), combined with 
Cu2+, could contribute to the green colouration of these 
tourmalines. However, because elemental analysis 
by LA-ICP-TOF-MS does not distinguish oxidation 
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t-SNE and UMAP Plots with Element Signatures
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t-SNE and UMAP Plots Coded by Sample Colour
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Figure 6: (a) t-SNE and (b) UMAP plots 
(from Figures 3d and 3e) are coded 
here by primary sample colours (blue, 
green or purple). In both plots, samples 
with similar colours tend to cluster 
together, suggesting some relationship 
between colour and elemental 
composition. However, the presence  
of multiple subgroups per locality 
(cf. Figure 5) may reflect multiple 
deposits within a single geographic 
region. The dashed box indicates the 
area of the plot enlarged in Figure 7b.
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states, this interpretation remains speculative.
The presence of multiple ML subgroups per locality 

raises the question of whether these subgroups reflect 
multiple deposits within a single geographic region. 
For instance, Brazil hosts several known Cu-bearing 
tourmaline deposits, including São José da Batalha, 
Alto dos Quintos and the Mulungu mine. However, 
examination of a single zoned multicoloured Brazilian 
sample, described below, seems to suggest otherwise.

Colour and Composition Zoning in 
Cu-bearing Tourmaline
We performed further analyses of a multicoloured 
Cu-bearing tourmaline (reportedly from São José 
da Batalha, Brazil) from the 469-sample dataset to 
demonstrate how t-SNE can be used to trace compo-
sitional and colour zoning within a single crystal. 
The sample colours ranged from purple in the core 
through blue to green at the rim, and 13 laser-abla-
tion spots were analysed across these colour zones 
(Figure 7a). Spot 5 intersected an inclusion and 
yielded a significantly higher Cs concentration (10 
ppm) than the average (0.06 ppm) of other spots. 
Similar Cs-rich phases have been reported in pink 
tourmaline-bearing pegmatites in Lower Austria 
(Walter et al. 2020), so this spot was considered an 
outlier and omitted from further analysis.

Figure 7b shows an enlarged view of the Brazilian 
cluster in the t-SNE plot (dashed box in Figure 6a) 
with the positions of the multicoloured sample’s 
analyses indicated. Interestingly, the purple, blue 
and green colour zones of the sample corresponded 
to three distinct subclusters of the Brazilian group 
in the t-SNE plot. This corresponds to the link 
between colour zoning and compositional variation 
within tourmaline. However, despite these compo-
sitional differences, all data points from this sample 
remained within the overall Brazilian cluster, 
supporting the conclusion that they originated from 
a single geographic origin.

This finding suggests that certain subgroups in the 
t-SNE plot may reflect growth zoning within single 
crystals or local variations within one mine rather than 
distinct geographic deposits. Furthermore, because 
this sample was unheated, as the purple core suggests, 
the blue and green zones are likely also unmodified. 
These natural variations provide a valuable reference 
for distinguishing unheated and heat-treated samples. 
Studying multicoloured tourmalines from confidently 
known sources is essential to understand intra-crystal 
zoning and refine origin assignments, and may 
provide a compositional framework for identifying 
heat treatment of Cu-bearing tourmaline.

Implications for Heat Treatment Detection 
in Cu-bearing Tourmaline
The analysis of the multicoloured Brazilian sample 
(Figure 7) may offer a promising new approach to 
detect heat treatment in Cu-bearing tourmaline, comple-
mentary to conventional methods based on inclusions 
and spectral features such as the Mn3+ absorption 
band (Laurs et al. 2008). Because the colours of the 
sample’s zones are believed to be natural and are linked 
to distinct clusters in the t-SNE plot, these clusters 
can be interpreted as elemental signatures of unheated 
material. For example, the purple core falls within a 
specific cluster in the t-SNE map, but some of the other 
samples in that cluster display a blue colour instead of 
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Figure 7: (a) An unheated multicoloured Cu-bearing tourmaline 
sample from Brazil (reportedly from São José da Batalha) shows 
distinct colour zoning, from purple in the core through blue to 
green at the rim. The 13 analytical spots are marked. Spots 9 and 
10 were measured on a fragment that detached during sample 
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positions of the 13 analysed spots (triangle symbols) within the 
t-SNE plot. Spot 5 likely captured a Cs-bearing inclusion, so it 
was omitted from data analysis. A comparison of Figures 6 and 
7 shows that the observed subgroups in Figures 3–6 do not 
necessarily correspond to different deposits. 
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purple. This raises the possibility that those specimens 
may have undergone heat treatment to reduce purple 
and enhance blue colouration. Similarly, the lower 
cluster in the t-SNE plot includes the blue zone of the 
multicoloured sample. Other samples in this cluster are 
also blue, which suggests that this cluster may represent 
unheated blue tourmalines. These associations between 
composition and colour provide a new framework for 
flagging potential heat-treatment candidates.

This approach is especially valuable because 
many Cu-bearing tourmalines are of high clarity 
and lack inclusions that could provide evidence of 
heat treatment. More work is needed to validate this 
method, combining unsupervised ML with confi-
dently unheated reference samples to strengthen 
the identification of treated stones. In addition, this 
framework may complement established geochem-
ical indicators. For example, Okrusch et al. (2016) 
proposed that blue Cu-bearing tourmalines with 
CuO/MnOtot<0.5 may have undergone heat treatment 
to reduce the reddish component associated with 
Mn3+. Integrating such chemical ratios with ML- 
derived clustering and colour zoning could enhance 
the reliability of treatment detection. 
 
CONCLUSIONS

This study demonstrates that combining full-spec-
trum elemental analysis via LA-ICP-TOF-MS with 
unsupervised ML techniques offers a powerful and 
objective approach to determining the geographic 
origin of Cu-bearing tourmaline (e.g. Figure 8). 
Unsupervised ML techniques such as t-SNE and 
UMAP are more effective than traditional PCA in 
resolving complex relationships within high-dimen-
sional multielement datasets. 

Overall, mapping individual element distributions 
by t-SNE provided a powerful visual tool for inter-
preting the geochemical drivers of sample clustering. 
The element-specific overlays demonstrated that the 
t-SNE clustering was not arbitrary; rather, it reflected 
geochemical similarities across major, minor and trace 
elements. By linking elevated elemental zones with 
geographic clusters, we gained intuitive origin-specific 
elemental fingerprints and an interpretable framework 
for origin determination. Moreover, this technique may 
provide insight into the geochemical evolution and 
formation conditions of tourmaline deposits.

By combining t-SNE and UMAP (Figure 5), robust 
non-linear ML could resolve not only major country-
of-origin groups but also intra-origin subclusters 
defined by subtle elemental patterns. These subclus-
ters may reflect variations in geological conditions 

during crystal growth (e.g. different mining sites 
within a larger deposit area), and are of particular 
interest for ongoing mineralogical research. For 
example, the presence of relatively high-Cd Brazilian 
samples suggests unique formation conditions that 
require further investigation. 

The ability of unsupervised ML algorithms to 
reveal natural groupings without relying on pre- 
assigned origin labels makes them particularly 
valuable in gemmology, where origin information 
is frequently uncertain and new sources continue to 
emerge. Moreover, such unsupervised approaches 
provide a crucial preliminary step before applying 
downstream ML or AI methods, helping to refine the 
dataset and augment the gemmologist’s decision-
making for geographic origin determination. 

Beyond origin determination, unsupervised ML 
potentially provides insight into a stone’s colour 
zoning and growth history, paving the way for 
more comprehensive gemmological investigations. 
In particular, the integration of known unheated 
reference samples into the workflows may support 
the development of a new method for detecting heat 
treatment in high-purity Cu-bearing tourmaline.

Overall, this study highlights the transformative 
potential of unsupervised ML in gem research and 
testing. It lays the foundation for more accurate, 
data-driven classification systems that can adapt to 
the evolving complexity of the global gem market.

Figure 8: An exceptional Paraíba tourmaline (about 5 ct) from 
Brazil, set in a ring from the Asta Collection, Hong Kong, illustrates 
gem-quality tourmaline for which origin determination is 
important. Photo by SSEF. 
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